Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment

[1]  E. Pamuła,et al.  Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy , 2017 .

[2]  N. Selvamurugan,et al.  Chitosan based biocomposite scaffolds for bone tissue engineering. , 2016, International journal of biological macromolecules.

[3]  J. Bumgardner,et al.  An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. , 2016, International journal of biological macromolecules.

[4]  N. Rajendran,et al.  Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan. , 2016, International journal of biological macromolecules.

[5]  A. Boccaccini,et al.  Electrophoretic deposition of chitosan/Bioglass® and chitosan/Bioglass®/TiO2 composite coatings for bioimplants , 2016 .

[6]  May Win Naing,et al.  Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering , 2016 .

[7]  M. Tabrizian,et al.  Composite biopolymers for bone regeneration enhancement in bony defects. , 2016, Biomaterials science.

[8]  M. Textor,et al.  Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. , 2015, Acta biomaterialia.

[9]  Huipin Yuan,et al.  Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. , 2015, Acta biomaterialia.

[10]  N. Rajendran,et al.  Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[11]  Aleš Iglič,et al.  Wettability studies of topologically distinct titanium surfaces. , 2015, Colloids and surfaces. B, Biointerfaces.

[12]  Sajini Vadukumpully,et al.  Graphene oxide nanoflakes incorporated gelatin–hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells , 2015, Nanotechnology.

[13]  L. Jayaram,et al.  Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin-hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. , 2015, Tissue engineering. Part A.

[14]  Ira Bhatnagar,et al.  Alginate composites for bone tissue engineering: a review. , 2015, International journal of biological macromolecules.

[15]  M. Nair,et al.  Antibiotic releasing biodegradable scaffolds for osteomyelitis. , 2014, Current drug delivery.

[16]  Richard Cook,et al.  Bone and metal: an orthopaedic perspective on osseointegration of metals. , 2014, Acta biomaterialia.

[17]  S. Lankalapalli,et al.  Preparation and Evaluation of Vancomycin Polyelectrolyte Complex Nanoparticles , 2014 .

[18]  N. Rajendran,et al.  Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications , 2014 .

[19]  N. Sharma,et al.  Nanosurface - the future of implants. , 2014, Journal of clinical and diagnostic research : JCDR.

[20]  Jan Henkel,et al.  Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective , 2013, Bone Research.

[21]  Wilson Wang,et al.  Titanium Alloys in Orthopaedics , 2013 .

[22]  S. Yen,et al.  Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. , 2013, Materials science & engineering. C, Materials for biological applications.

[23]  M. Kucharska,et al.  Chitosan-hydroxyapatite composites. , 2013, Carbohydrate polymers.

[24]  Wenjie Zhang,et al.  Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells , 2013, International journal of nanomedicine.

[25]  T. Lee,et al.  Contact Angle and Wetting Properties , 2013 .

[26]  Y. Kang,et al.  Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. , 2012, ACS applied materials & interfaces.

[27]  L. Xia,et al.  In vitro and in vivo studies of surface-structured implants for bone formation , 2012, International journal of nanomedicine.

[28]  Chenyu Wang,et al.  In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite , 2012, Drug delivery.

[29]  T.S.N. Sankara Narayanan,et al.  Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications , 2012 .

[30]  J. Lausmaa,et al.  Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants , 2011, International journal of nanomedicine.

[31]  Yi-chao Wang,et al.  Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits , 2011, Inflammation Research.

[32]  J. Granjeiro,et al.  Incorporation of strontium up to 5 Mol. (%) to hydroxyapatite did not affect its cytocompatibility , 2011 .

[33]  V. Fowler,et al.  Vancomycin minimum inhibitory concentration and outcome in patients with Staphylococcus aureus bacteremia: pearl or pellet? , 2011, The Journal of infectious diseases.

[34]  A. Wennerberg,et al.  Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation , 2011, BMC oral health.

[35]  N. Selvamurugan,et al.  Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. , 2010, International journal of biological macromolecules.

[36]  Prasanta Chowdhury,et al.  Kinetic modeling on drug release from controlled drug delivery systems. , 2010, Acta poloniae pharmaceutica.

[37]  Yi Liu,et al.  Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. , 2010, Biomacromolecules.

[38]  C. Lindahl,et al.  Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. , 2010, Acta biomaterialia.

[39]  M. Chu,et al.  Sol–gel synthesis and characterization of hydroxyapatite nanorods , 2009 .

[40]  N. Dahotre,et al.  Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies , 2009 .

[41]  R. Misra,et al.  Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. , 2009, Acta biomaterialia.

[42]  Xin Pang,et al.  Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings. , 2009, Journal of colloid and interface science.

[43]  J. Calhoun,et al.  Osteomyelitis of the Long Bones , 1912, Seminars in plastic surgery.

[44]  Á. Soriano,et al.  Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  K. Hirakawa,et al.  Slow-releasing potential of vancomycin-loaded porous hydroxyapatite blocks implanted into MRSA osteomyelitis. , 2002, Journal of biomedical materials research.

[46]  W. Hammes,et al.  On the Mechanism of Action of Vancomycin: Inhibition of Peptidoglycan Synthesis in Gaffkya homari , 1974, Antimicrobial Agents and Chemotherapy.