What Have Computational Models Ever Done for Us?: A Case Study in Classical Conditioning

The last 50 years have seen the progressive refinement of our understanding of the mechanisms of classical conditioning and this has resulted in the development of several influential theories that are able to explain with considerable precision a wide variety of experimental findings, and to make non-intuitive predictions that have been confirmed. This success has spurred the development of increasingly sophisticated models that encompass more complex phenomena. In such context, it is widely acknowledged that computational modeling plays a fundamental part. In this paper the authors analyze critically the role that computational models, as simulators and as psychological models by proxy, have played in this enterprise.

[1]  E. Thorndike Scientific Literature: Animal Intelligence , 1898 .

[2]  Dearborn Animal Intelligence: An Experimental Study of the Associative Processes in Animals , 1900 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  P. Dirac XI.—The Relation between Mathematics and Physics , 1940 .

[5]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[6]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[7]  M. Seligman Phobias and preparedness , 1971 .

[8]  R. Rescorla A theory of pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement , 1972 .

[9]  H. Akaike A new look at the statistical model identification , 1974 .

[10]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  H. Zimmermann,et al.  OSI Reference Model - The ISO Model of Architecture for Open Systems Interconnection , 1980, IEEE Transactions on Communications.

[13]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[14]  W M Baum,et al.  Matching, statistics, and common sense. , 1983, Journal of the experimental analysis of behavior.

[15]  R. Dawkins The Blind Watchmaker , 1986 .

[16]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[17]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[18]  B. Skinner The origins of cognitive thought. , 1989 .

[19]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[20]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[21]  Konrad Zuse,et al.  Rechnender Raum , 1991, Physik und Informatik.

[22]  R. Shull Mathematical Description of Operant Behavior: an Introduction , 1991 .

[23]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[24]  J. Sayers Against Method , 2016 .

[25]  N. Mackintosh Animal learning and cognition , 1994 .

[26]  R. Morris CHAPTER 6 – The Neural Basis of Learning with Particular Reference to the Role of Synaptic Plasticity: Where Are We a Century after Cajal's Speculations?* , 1994 .

[27]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[28]  David R. Shanks,et al.  The Psychology of Associative Learning , 1995 .

[29]  JOHN W. Moore,et al.  To appear in D.A. Rosenbaum & C.E. Collyer (Eds.), Timing of behavior: Neural, computational, and psychological perspectives. Cambridge, MA: MIT Press Predictive Timing Under Temporal Uncertainty: The TD Model of the Conditioned Response , 1996 .

[30]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[31]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[32]  R. R. Miller,et al.  What's elementary about associative learning? , 1997, Annual review of psychology.

[33]  David A. Medler A Brief History of Connectionism , 1998 .

[34]  Christian Balkenius,et al.  Computational models of classical conditioning: a comparative study , 1998 .

[35]  J. Wheeler Information, physics, quantum: the search for links , 1999 .

[36]  C. Gallistel,et al.  Computational Versus Associative Models of Simple Conditioning , 2001 .

[37]  J. Pearce,et al.  Theories of associative learning in animals. , 2001, Annual review of psychology.

[38]  P. Killeen The Four Causes of Behavior , 2001, Current directions in psychological science.

[39]  G. Rees The new phrenology: the limits of localizing cognitive processes in the brain , 2002 .

[40]  G. Hall Associative Structures in Pavlovian and Instrumental Conditioning , 2002 .

[41]  P. Dirac XI. The relation between mathematics and physics , 2003 .

[42]  Edgar H Vogel,et al.  Quantitative models of Pavlovian conditioning , 2004, Brain Research Bulletin.

[43]  Anjan Chakravartty,et al.  The Semantic or Model-Theoretic View of Theories and Scientific Realism , 2004, Synthese.

[44]  S. Ghirlanda,et al.  Neural Networks and Animal Behavior (Monographs in Behavior and Ecology) , 2005 .

[45]  Magnus Enquist,et al.  Neural networks and animal behavior , 2005 .

[46]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[47]  Vlatko Vedral,et al.  Introduction to Quantum Information Science (Oxford Graduate Texts) , 2006 .

[48]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[49]  Vlatko Vedral,et al.  Introduction to Quantum Information Science , 2006 .

[50]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[51]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[52]  J. Staddon Is Animal Learning Optimal , 2007 .

[53]  Anna Thorwart,et al.  Rapid-REM: A MATLAB simulator of the replaced-elements model , 2008, Behavior research methods.

[54]  J. Townsend Mathematical Psychology: Prospects For The 21 Century: A Guest Editorial. , 2008, Journal of mathematical psychology.

[55]  Anna Thorwart,et al.  HMS: A MATLAB simulator of the Harris model of associative learning , 2008, Behavior research methods.

[56]  F. E. H. N. Wijermans The Cambridge Handbook of Computational Psychology , 2009 .

[57]  H. Pashler,et al.  Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition 1 , 2009, Perspectives on psychological science : a journal of the Association for Psychological Science.

[58]  Anna Thorwart,et al.  ALTSim: A MATLAB simulator for current associative learning theories , 2009, Behavior research methods.

[59]  Eduardo Alonso,et al.  Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications , 2010 .

[60]  Christopher J. Mitchell,et al.  Attention and Associative Learning: From Brain to Behaviour , 2010 .

[61]  N. Schmajuk Mechanisms in Classical Conditioning: A Computational Approach , 2010 .

[62]  Frederico G. Guimarães,et al.  Memetic and Evolutionary Design of Wireless Sensor Networks Based on Complex Network Characteristics , 2010, Int. J. Nat. Comput. Res..

[63]  Nestor Schmajuk,et al.  Computational Models of Conditioning: Frontmatter , 2010 .

[64]  Khaled Ghédira,et al.  Load Balancing for the Dynamic Distributed Double Guided Genetic Algorithm for MAX-CSPs , 2010, Int. J. Artif. Life Res..

[65]  Leonid I. Perlovsky,et al.  Cognitively Inspired Neural Network for Recognition of Situations , 2010, Int. J. Nat. Comput. Res..

[66]  Limin Angela Liu Handbook of Research on Computational and Systems Biology - Interdisciplinary Applications , 2011 .

[67]  Marc G. Bellemare,et al.  A primer on reinforcement learning in the brain : Psychological, computational, and neural perspectives , 2011 .

[68]  Carlos Gershenson What Does Artificial Life Tell Us About Death? , 2011, Int. J. Artif. Life Res..

[69]  Artiom Alhazov,et al.  Forward and Backward Chaining with P Systems , 2011, Int. J. Nat. Comput. Res..

[70]  Nuno Lourenço,et al.  PSO-CGO: A Particle Swarm Algorithm for Cluster Geometry Optimization , 2011, Int. J. Nat. Comput. Res..

[71]  T. Schachtman,et al.  Associative learning and conditioning theory : human and non-human applications , 2011 .

[72]  Hesham H. Ali,et al.  A New Approach for Sequence Analysis: Illustrating an Expanded Bioinformatics View through Exploring Properties of the Prestin Protein , 2011, Handbook of Research on Computational and Systems Biology.

[73]  Y. Niv,et al.  Exploring a latent cause theory of classical conditioning , 2012, Learning & Behavior.

[74]  木村 元,et al.  量子情報科学入門 = Introduction to quantum information science , 2012 .

[75]  Eduardo Alonso,et al.  Special issue on computational models of classical conditioning guest editors’ introduction , 2012, Learning & Behavior.

[76]  Eduardo Alonso,et al.  A Java simulator of Rescorla and Wagner's prediction error model and configural cue extensions , 2012, Comput. Methods Programs Biomed..

[77]  Dinesh C. Verma,et al.  Biologically Inspired Networking and Sensing - Algorithms and Architectures , 2012, Biologically Inspired Networking and Sensing.

[78]  Elliot A. Ludvig,et al.  Evaluating the TD model of classical conditioning , 2012, Learning & behavior.

[79]  Michael Fairbank,et al.  The divergence of reinforcement learning algorithms with value-iteration and function approximation , 2011, The 2012 International Joint Conference on Neural Networks (IJCNN).

[80]  Eduardo Alonso,et al.  A Complete Serial Compound Temporal Difference Simulator for Compound stimuli, Configural cues and Context representation , 2012, Neuroinformatics.

[81]  A. Wills,et al.  On the adequacy of current empirical evaluations of formal models of categorization. , 2012, Psychological bulletin.

[82]  Eduardo Alonso,et al.  Associative Reinforcement Learning - A Proposal to Build Truly Adaptive Agents and Multi-agent Systems , 2013, ICAART.

[83]  Mark Haselgrove,et al.  Clinical Applications of Learning Theory , 2013 .

[84]  Eduardo Alonso,et al.  An extension of the Rescorla and Wagner Simulator for context conditioning , 2013, Comput. Methods Programs Biomed..

[85]  C. Gallistel,et al.  The neuroscience of learning: beyond the Hebbian synapse. , 2013, Annual review of psychology.

[86]  Stephen R. Gulliver,et al.  Cognitive and Environmental Factors Influencing the Process of Spatial Knowledge Acquisition within Virtual Reality Environments , 2014, Int. J. Artif. Life Res..

[87]  Roy Rada,et al.  Knowledge in Memetic Algorithms for Stock Classification , 2014, Int. J. Artif. Life Res..

[88]  Huosheng Hu,et al.  A Flexible Bio-Signal Based HMI for Hands-Free Control of an Electric Powered Wheelchair , 2014, Int. J. Artif. Life Res..

[89]  Greg Gogolin,et al.  Virtual Worlds and Social Media: Security and Privacy Concerns, Implications, and Practices , 2014, Int. J. Artif. Life Res..

[90]  International Journal of Natural Computing Research , 2022 .