Processing of bioresorbable closed-cell Mg foam for bone implant applications

[1]  Ajit Kumar,et al.  Comparison of processing routes for efficacious fabrication of Mg3Zn1Ca15Nb biomaterial , 2021 .

[2]  B. Pramod,et al.  Statistical analysis for cost effective process parameters and localized strain hardening behavior of Al-7050 foam , 2021 .

[3]  A. Boccaccini,et al.  Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe , 2021 .

[4]  M. Jahazi,et al.  Microstructure refinement, mechanical and biocorrosion properties of Mg–Zn–Ca–Mn alloy improved by a new severe plastic deformation process , 2021 .

[5]  Cecilia D. Treviño-Quintanilla,et al.  Use of additive manufacturing for the fabrication of cellular and lattice materials: a review , 2020 .

[6]  Kezheng Chen,et al.  Electrodeposition of micro-nano hierarchically structured fluoridated hydroxyapatite coating on AZ31B alloy , 2020 .

[7]  M. Bryant,et al.  Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review , 2020 .

[8]  Surjya K. Pal,et al.  A new sintering method for fabrication of open-cell metal foam parts , 2020 .

[9]  Yang Zhang,et al.  Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys , 2020 .

[10]  Wei Yan,et al.  In vitro degradation of pure magnesium―the synergetic influences of glucose and albumin , 2020, Bioactive materials.

[11]  J. Eckert,et al.  New Mg-Ca-Zn Amorphous Alloys: Biocompatibility, Wettability and Mechanical Properties , 2020, Materialia.

[12]  E. Han,et al.  In vitro corrosion of pure Mg in phosphate buffer solution-Influences of isoelectric point and molecular structure of amino acids. , 2019, Materials science & engineering. C, Materials for biological applications.

[13]  J. Schleifenbaum,et al.  Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. , 2019, Acta biomaterialia.

[14]  P. Wriggers,et al.  Processing and coating of open-pored absorbable magnesium-based bone implants. , 2019, Materials science & engineering. C, Materials for biological applications.

[15]  S. Kumar,et al.  Processing of titanium-based human implant material using wire EDM , 2019, Materials and Manufacturing Processes.

[16]  S. Das,et al.  Fabrication and investigation of influence of CaCO3 as foaming agent on Al-SiCp foam , 2018, Materials and Manufacturing Processes.

[17]  Ke Yang,et al.  Mechanical properties of magnesium alloys for medical application: A review. , 2018, Journal of the mechanical behavior of biomedical materials.

[18]  B. S. Pabla,et al.  Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering , 2018, Materials and Manufacturing Processes.

[19]  F. Azarmi,et al.  3D printed biocompatible polylactide-hydroxyapatite based material for bone implants , 2018 .

[20]  Siyi Yang,et al.  Fabrication and experimental investigation of metal grid structure-reinforced aluminum foams , 2018 .

[21]  M. Sivapragash,et al.  Comprehensive studies on processing and characterization of hybrid magnesium composites , 2018 .

[22]  H Weinans,et al.  Additively manufactured biodegradable porous magnesium. , 2017, Acta biomaterialia.

[23]  Y. Zhang,et al.  Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid , 2017 .

[24]  A. Rack,et al.  Microporosity in aluminium foams , 2017 .

[25]  Peifeng Li,et al.  Dynamic compressive behaviour of Mg foams manufactured by the direct foaming process , 2016 .

[26]  A. Vaziri,et al.  Biomechanics and mechanobiology of trabecular bone: a review. , 2015, Journal of biomechanical engineering.

[27]  M. Jabłoński,et al.  Thermal behavior of natural dolomite , 2015, Journal of Thermal Analysis and Calorimetry.

[28]  M. Medraj,et al.  Microstructure and bio‐corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications , 2014 .

[29]  S. Nath,et al.  Processing, microstructure and properties of ultrasonically processed in situ MgO–Al2O3–MgAl2O4 dispersed magnesium alloy composites , 2014 .

[30]  T. Koizumi,et al.  Aluminum Metallic Foams Made by Carbonate Foaming Agents , 2013 .

[31]  Weimin Zhao,et al.  Effects of specimen aspect ratio on the compressive properties of Mg alloy foam , 2012 .

[32]  G. Tosun,et al.  Analysis of Process Parameters for Porosity in Porous NiTi Implants , 2012 .

[33]  I. Sopyan,et al.  Porous Magnesium-Doped Biphasic Calcium Phosphate Ceramics Prepared via Polymeric Sponge Method , 2012 .

[34]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[35]  Zhen-hua Chen,et al.  Investigation on the Microstructure Characterization and Aging Response of Rapidly Solidified Mg-6wt%Zn-5wt%Ca Alloy Produced by Atomization-Twin Roll Quenching Technology , 2012 .

[36]  Baoping Zhang,et al.  Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions , 2011 .

[37]  B. Li,et al.  Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl , 2011 .

[38]  R. Raiszadeh,et al.  Fabricating Al Foam from Turning Scraps , 2011 .

[39]  Z. Sarajan,et al.  Foaming of Al-Si by TiH2 , 2011 .

[40]  R. Edwin Raj,et al.  Customization of closed-cell aluminum foam properties using design of experiments , 2011 .

[41]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[42]  Z. Sarajan,et al.  Influences of Titanium Hydride (TiH2) Content and Holding Temperature in Foamed Pure Aluminum , 2009 .

[43]  B. Hur,et al.  Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent , 2008 .

[44]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[45]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[46]  T. Mizoguchi,et al.  Dolomite supplementation improves bone metabolism through modulation of calcium-regulating hormone secretion in ovariectomized rats , 2004, Journal of Bone and Mineral Metabolism.

[47]  S. Raghavan,et al.  ANODIZED LAYERS ON TITANIUM AND TITANIUM ALLOY ORTHOPEDIC MATERIALS FOR ANTIMICROBIAL ACTIVITY APPLICATIONS , 1992 .