Large deviations for diffusions: Donsker-Varadhan meet Freidlin-Wentzell

We consider a diffusion process on $\mathbb R^n$ and prove a large deviation principle for the empirical process in the joint limit in which the time window diverges and the noise vanishes. The corresponding rate function is given by the expectation of the Freidlin-Wentzell functional per unit of time. As an application of this result, we obtain a variational representation of the rate function for the Gallavotti-Cohen observable in the small noise and large time limits.

[1]  C. Landim,et al.  Full $\Gamma$-expansion of reversible Markov chains level two large deviations rate functionals , 2023, 2303.00671.

[2]  C. Landim Metastability from the large deviations point of view: A $\Gamma$-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains , 2022, 2209.11532.

[3]  C. Landim,et al.  Metastable $\Gamma$-expansion of finite state Markov chains level two large deviations rate functions , 2022, 2207.02588.

[4]  Lorenzo Bertini,et al.  Concurrent Donsker–Varadhan and hydrodynamical large deviations , 2021, The Annals of Probability.

[5]  Renaud Raqu'epas,et al.  The large-time and vanishing-noise limits for entropy production in nondegenerate diffusions , 2020, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[6]  A. Shirikyan,et al.  Entropic Fluctuations in Thermally Driven Harmonic Networks , 2016, 1606.01498.

[7]  Giacomo Di Gesù,et al.  Full Metastable Asymptotic of the Fisher Information , 2016, SIAM J. Math. Anal..

[8]  Feng-Yu Wang,et al.  Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations , 2015, 1510.01881.

[9]  L. Rey-Bellet,et al.  Entropic fluctuations in statistical mechanics: I. Classical dynamical systems , 2010, 1009.3248.

[10]  Giacomo Di Gesù,et al.  Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes , 2010, 1004.2371.

[11]  Paolo Maria Mariano,et al.  A. Braides, Γ–convergence for beginners , 2007 .

[12]  P. Bernard Young measures, superposition and transport , 2007, math/0701451.

[13]  J. Kurchan Gallavotti–Cohen Theorem, Chaotic Hypothesis and the Zero-Noise Limit , 2006, cond-mat/0612397.

[14]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[15]  C. Maes The Fluctuation Theorem as a Gibbs Property , 1998, math-ph/9812015.

[16]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[17]  S. Ciliberto,et al.  An experimental test of the Gallavotti-Cohen fluctuation theorem , 1998 .

[18]  J. Kurchan Fluctuation theorem for stochastic dynamics , 1997, cond-mat/9709304.

[19]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[20]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[21]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[22]  Shmuel Agmon,et al.  Review: M. H. Protter and H. F. Weinberger, Maximum principles in differential equations , 1971 .

[23]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[24]  L. Rey-Bellet Entropic Fluctuations in Statistical Mechanics I. , 2010 .

[25]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[26]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[27]  Andrea Braides Γ-convergence for beginners , 2002 .

[28]  R. Azencott,et al.  Grandes deviations et applications , 1980 .