Robust Machine Learning Applied to Astronomical Data Sets. II. Quantifying Photometric Redshifts for Quasars Using Instance-based Learning
暂无分享,去创建一个
Robert J. Brunner | Adam D. Myers | David Tcheng | Department of Physics | University of Illinois at Urbana-Champaign | Nicholas M. Ball | Natalie E. Strand | A. Myers | N. Ball | U. I. Urbana-Champaign | R. Brunner | D. Physics | D. Tcheng | Xavier Llorà | S. Alberts | N. E. Strand | X. L. D. O. Astronomy | National Center for Supercomputing Applications | Stacey L. Alberts | Xavier Llora Department of Astronomy
[1] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[2] D. C. Koo,et al. Optical multicolors - A poor person's z machine for galaxies , 1985 .
[3] A. Cimatti,et al. A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.
[4] Edwin L. Turner,et al. A Catalog of Color-based Redshift Estimates for Z <~ 4 Galaxies in the Hubble Deep Field , 1998 .
[5] D. Wake,et al. MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies , 2006, astro-ph/0607630.
[6] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[7] Oxford,et al. The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.
[8] S. Dye,et al. The evolution of faint AGN between z ' 1 and z ' 5 from the COMBO-17 survey , 2003 .
[9] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees , 2006, astro-ph/0606541.
[10] Massimo Stiavelli,et al. The Hubble Ultra Deep Field , 2003, astro-ph/0607632.
[11] Alexander G. Gray,et al. First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.
[12] Peter E. Hart,et al. Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.
[13] Alexander S. Szalay,et al. Toward More Precise Photometric Redshifts: Calibration via CCD Photometry , 1997, astro-ph/9703058.
[14] Alexander S. Szalay,et al. Photometric redshifts from reconstructed quasar templates , 2001 .
[15] Massimo Stiavelli,et al. The Hubble Deep Field South: Formulation of the observing campaign , 2000 .
[16] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[17] A Blind Test of Photometric Redshift Prediction , 1998, astro-ph/9801133.
[18] Granada,et al. Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.
[19] The nature of the faint galaxies in the Hubble Deep Field , 1996, astro-ph/9604118.
[20] Goldberg,et al. Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.
[21] Chang Wook Ahn,et al. On the practical genetic algorithms , 2005, GECCO '05.
[22] David E. Goldberg,et al. The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .
[23] Karl Rihaczek,et al. 1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.
[24] David W. Aha,et al. Instance-Based Learning Algorithms , 1991, Machine Learning.
[25] Fermilab,et al. Photometric Redshifts of Quasars , 2001, astro-ph/0106038.
[26] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[27] ROBERT E. Williams,et al. The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.
[28] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[29] R. J. Brunner,et al. The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.
[30] A. Szalay,et al. The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.
[31] A. Fontana,et al. Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.
[32] E. Wright,et al. The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.
[33] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[34] R. Nichol,et al. An Empirical Calibration of the Completeness of the SDSS Quasar Survey , 2005, astro-ph/0501113.
[35] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[36] A. Myers,et al. Clustering Analyses of 300,000 Photometrically Classified Quasars. II. The Excess on Very Small Scales , 2006, astro-ph/0612191.
[37] Alberto Fernández-Soto,et al. Star-forming galaxies at very high redshifts , 1996, Nature.
[38] E. Spillar,et al. Photometric Redshifts of Galaxies , 1986 .
[39] S. Okamura,et al. Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.
[40] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[41] R. Nichol,et al. The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.
[42] M. Irwin,et al. ImpZ: a new photometric redshift code for galaxies and quasars , 2004, astro-ph/0406296.
[43] David E. Goldberg. Design of Competent Genetic Algorithms , 2002 .
[44] Tamas Budavari,et al. An Empirical Algorithm for Broadband Photometric Redshifts of Quasars from the Sloan Digital Sky Survey , 2004, astro-ph/0408504.
[45] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[46] V. Narayanan,et al. Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.
[47] Alexander S. Szalay,et al. Calibrating photometric redshifts of luminous red galaxies , 2005 .
[48] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[49] A. Connolly,et al. Evolution of the Angular Correlation Function , 1998, astro-ph/9803047.
[50] S. Gwyn,et al. The Redshift Distribution and Luminosity Functions of Galaxies in the Hubble Deep Field , 1996, astro-ph/9603149.
[51] A. Szalay,et al. Evolution in the Clustering of Galaxies for z < 1.0 , 1999, astro-ph/9907403.
[52] John Holland,et al. Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .
[53] Alexander S. Szalay,et al. Sloan digital sky survey: Early data release , 2002 .
[54] M. Way,et al. Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .
[55] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[56] Clustering analyses of 300,000 photometrically classified quasars. I. Luminosity and redshift evolution in quasar bias , 2006, astro-ph/0612190.
[57] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[58] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[59] H. Lin,et al. Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1997 .