Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision

NURBS surfaces can be non-uniform and defined for any degree, but existing subdivision surfaces are either uniform or of fixed degree. The resulting incompatibility forms a barrier to the adoption of subdivision for CAD applications. Motivated by the search for NURBS-compatible subdivision schemes, we present a non-uniform subdivision algorithm for B-splines in the spirit of the uniform Lane-Riesenfeld 'refine and smooth' algorithm. In contrast to previous approaches, our algorithm is independent of index direction (symmetric), and also allows a selection of knot intervals to remain unaltered by the subdivision process. B-splines containing multiple knots, an important non-uniform design tool, can therefore be subdivided without increasing knot multiplicity.

[1]  Wolfgang Böhm On the efficiency of knot insertion algorithms , 1985, Comput. Aided Geom. Des..

[2]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  J. Stam On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001 .

[4]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[5]  Neil A. Dodgson,et al.  Non-uniform B-Spline Subdivision Using Refine and Smooth , 2007, IMA Conference on the Mathematics of Surfaces.

[6]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[7]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[8]  Ron Goldman,et al.  Non-uniform subdivision for B-splines of arbitrary degree , 2009, Comput. Aided Geom. Des..

[9]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[10]  Ron Goldman,et al.  An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression , 1993, CVGIP Graph. Model. Image Process..

[11]  Neil A. Dodgson,et al.  A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines , 2009, Comput. Aided Geom. Des..

[12]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[13]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[14]  John A. Gregory,et al.  Nonuniform corner cutting , 1996, Comput. Aided Geom. Des..

[15]  Ron Goldman,et al.  Blossoming and knot insertion algorithms for B-spline curves , 1990, Comput. Aided Geom. Des..

[16]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[17]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[18]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .