Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics

G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases.

[1]  T. Spalding,et al.  Constitutive Activity of Muscarinic Acetylcholine Receptors , 2006, Journal of receptor and signal transduction research.

[2]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[3]  George Khelashvili,et al.  Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties , 2012, PLoS Comput. Biol..

[4]  J Andrew McCammon,et al.  Studying functional dynamics in bio-molecules using accelerated molecular dynamics. , 2011, Physical chemistry chemical physics : PCCP.

[5]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[6]  B. Kobilka,et al.  Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. , 2010, Physiology.

[7]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[8]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[9]  Albert C. Pan,et al.  Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor , 2012, Nature.

[10]  J. Mccammon,et al.  Population Based Reweighting of Scaled Molecular Dynamics , 2013, The journal of physical chemistry. B.

[11]  R. Stevens,et al.  Structure-function of the G protein-coupled receptor superfamily. , 2013, Annual review of pharmacology and toxicology.

[12]  Donald Hamelberg,et al.  A statistical analysis of the precision of reweighting-based simulations. , 2008, The Journal of chemical physics.

[13]  Nagarajan Vaidehi,et al.  Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. , 2010, Journal of the American Chemical Society.

[14]  Ron O Dror,et al.  Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations , 2009, Proceedings of the National Academy of Sciences.

[15]  J. Mccammon,et al.  Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities , 2012, Proceedings of the National Academy of Sciences.

[16]  W. Marsden I and J , 2012 .

[17]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[18]  Alan Grossfield,et al.  Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. , 2011, Biochimica et biophysica acta.

[19]  B. Kobilka,et al.  The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). , 2013, Angewandte Chemie.

[20]  Marta Filizola,et al.  Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. , 2011, Current opinion in structural biology.

[21]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[22]  J Andrew McCammon,et al.  Accelerated molecular dynamics in computational drug design. , 2012, Methods in molecular biology.

[23]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[24]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[25]  S. Vanni,et al.  A closer look into G protein coupled receptor activation: X-ray crystallography and long-scale molecular dynamics simulations. , 2012, Current medicinal chemistry.

[26]  N. Nathanson,et al.  Structural biology: Muscarinic receptors become crystal clear , 2012, Nature.

[27]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[28]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[29]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[30]  Klaus Schulten,et al.  Implementation of Accelerated Molecular Dynamics in NAMD. , 2011, Computational science & discovery.

[31]  Davide Provasi,et al.  Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques , 2011, PLoS Comput. Biol..

[32]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[33]  Xavier Deupi,et al.  Structural insights into agonist-induced activation of G-protein-coupled receptors. , 2011, Current opinion in structural biology.

[34]  Davide Provasi,et al.  Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics. , 2010, Biophysical journal.

[35]  M. Lohse,et al.  Measurement of the millisecond activation switch of G protein–coupled receptors in living cells , 2003, Nature Biotechnology.

[36]  Nagarajan Vaidehi,et al.  The role of conformational ensembles in ligand recognition in G-protein coupled receptors. , 2011, Journal of the American Chemical Society.

[37]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[38]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[39]  Tod D Romo,et al.  Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics. , 2010, Biophysical journal.

[40]  Lisa M Simpson,et al.  Modeling GPCR active state conformations: The β2‐adrenergic receptor , 2011, Proteins.

[41]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[42]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[43]  Donald Hamelberg,et al.  Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study. , 2007, The Journal of chemical physics.

[44]  Levi C. T. Pierce,et al.  Adaptive Accelerated Molecular Dynamics (Ad-AMD) Revealing the Molecular Plasticity of P450cam , 2011, The journal of physical chemistry letters.

[45]  J. Mccammon,et al.  Enhanced Lipid Diffusion and Mixing in Accelerated Molecular Dynamics , 2011, Journal of Chemical Theory and Computation.

[46]  Amanda L. Jonsson,et al.  Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. , 2013, Journal of the American Chemical Society.

[47]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[48]  J. Andrew McCammon,et al.  Replica-Exchange Accelerated Molecular Dynamics (REXAMD) Applied to Thermodynamic Integration , 2008, Journal of chemical theory and computation.

[49]  J Andrew McCammon,et al.  Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations , 2012, Proceedings of the National Academy of Sciences.

[50]  J Andrew McCammon,et al.  Activation and dynamic network of the M2 muscarinic receptor , 2013, Proceedings of the National Academy of Sciences.

[51]  Robert V. Swift,et al.  Using multistate free energy techniques to improve the efficiency of replica exchange accelerated molecular dynamics , 2009, J. Comput. Chem..

[52]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[53]  J. Andrew McCammon,et al.  Using Selectively Applied Accelerated Molecular Dynamics to Enhance Free Energy Calculations , 2010, Journal of chemical theory and computation.

[54]  James Andrew McCammon,et al.  Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics , 2011, PLoS Comput. Biol..

[55]  M. Maggiolini,et al.  G protein-coupled receptors: novel targets for drug discovery in cancer , 2010, Nature Reviews Drug Discovery.

[56]  Levi C. T. Pierce,et al.  Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics , 2012, Journal of chemical theory and computation.

[57]  A. Kruse,et al.  Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist , 2011, Nature.

[58]  Ruben Abagyan,et al.  The GPCR Network: a large-scale collaboration to determine human GPCR structure and function , 2012, Nature Reviews Drug Discovery.

[59]  Alan Grossfield,et al.  Convergence of molecular dynamics simulations of membrane proteins , 2007, Proteins.

[60]  Anna-Pitschna E. Kunz,et al.  A comparison of methods to compute the potential of mean force. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[62]  S. Kuyucak,et al.  Molecular dynamics simulations of membrane proteins , 2012, Biophysical Reviews.

[63]  J. Mccammon,et al.  Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. , 2007, The Journal of chemical physics.

[64]  R. Nussinov,et al.  Folding and binding cascades: shifts in energy landscapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  William Sinko,et al.  w-REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations , 2013, Journal of chemical theory and computation.