Revisiting Gray Pixel for Statistical Illumination Estimation

We present a statistical color constancy method that relies on novel gray pixel detection and mean shift clustering. The method, called Mean Shifted Grey Pixel -- MSGP, is based on the observation: true-gray pixels are aligned towards one single direction. Our solution is compact, easy to compute and requires no training. Experiments on two real-world benchmarks show that the proposed approach outperforms state-of-the-art methods in the camera-agnostic scenario. In the setting where the camera is known, MSGP outperforms all statistical methods.

[1]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Theo Gevers,et al.  Color Constancy Using Natural Image Statistics and Scene Semantics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Yun-Ta Tsai,et al.  Fast Fourier Color Constancy , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Xinlei Chen,et al.  Mind's eye: A recurrent visual representation for image caption generation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Sung-Min Woo,et al.  Improving Color Constancy in an Ambient Light Environment Using the Phong Reflection Model , 2018, IEEE Transactions on Image Processing.

[6]  Kai-Fu Yang,et al.  Efficient illuminant estimation for color constancy using grey pixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Stephen Lin,et al.  FC^4: Fully Convolutional Color Constancy with Confidence-Weighted Pooling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Michael S. Brown,et al.  Two Illuminant Estimation and User Correction Preference , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Graham D. Finlayson,et al.  Corrected-Moment Illuminant Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Gerald Schaefer,et al.  Convex and non-convex illuminant constraints for dichromatic colour constancy , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  K. Ikeuchi,et al.  Color constancy through inverse-intensity chromaticity space. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[13]  D. Foster Color constancy , 2011, Vision Research.

[14]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Kai-Fu Yang,et al.  Color Constancy Using Double-Opponency , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[17]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[18]  Byoung-Ho Kang,et al.  Automatic White Balancing via Gray Surface Identification , 2007, CIC.

[19]  Keigo Hirakawa,et al.  Color Constancy with Spatio-Spectral Statistics , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jonathan T. Barron,et al.  Convolutional Color Constancy , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[22]  Michael S. Brown,et al.  Effective learning-based illuminant estimation using simple features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jiri Matas,et al.  Deep structured-output regression learning for computational color constancy , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[24]  Shoji Tominaga,et al.  MULTICHANNEL VISION SYSTEM FOR ESTIMATING SURFACE AND ILLUMINATION FUNCTIONS , 1996 .

[25]  Ming Zhang,et al.  Improving Color Constancy by Discounting the Variation of Camera Spectral Sensitivity , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[28]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Ayan Chakrabarti,et al.  Color Constancy by Learning to Predict Chromaticity from Luminance , 2015, NIPS.

[30]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[31]  Xiaoou Tang,et al.  Deep Specialized Network for Illuminant Estimation , 2016, ECCV.

[32]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[33]  Mark S. Drew,et al.  Exemplar-Based Color Constancy and Multiple Illumination , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  C. Alejandro Parraga,et al.  Colour Constancy Beyond the Classical Receptive Field , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Yongjie Li,et al.  Efficient Color Constancy with Local Surface Reflectance Statistics , 2014, ECCV.

[36]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[37]  Jiri Matas,et al.  Recurrent Color Constancy , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.