Isotropic High-density Graphite and Nuclear Applications

[1]  F. Kang,et al.  The use of asphalt emulsions as a binder for the preparation of polycrystalline graphite , 2013 .

[2]  Timothy D. Burchell,et al.  The effect of microstructure on air oxidation resistance of nuclear graphite , 2012 .

[3]  P. Barabaschi,et al.  Status of design and procurement activities in JT-60SA , 2011 .

[4]  D. Butt,et al.  Microstructural characterization and pore structure analysis of nuclear graphite , 2011 .

[5]  F. Kang,et al.  Effect of oxidative stabilization on the sintering of mesocarbon microbeads and a study of their carbonization , 2011 .

[6]  A. Sagara,et al.  Plasma surface interaction on the surface of tungsten divertor tiles in LHD , 2011 .

[7]  S. Sakurai,et al.  Heat transfer characteristics of the first wall with graphite sheet interlayer , 2010 .

[8]  Hiroshi Yamada,et al.  Design and installation of the closed helical divertor in LHD , 2010 .

[9]  T. Maruyama,et al.  Interpolation and Extrapolation Method to Analyze Irradiation-Induced Dimensional Change Data of Graphite for Design of Core Components in Very High Temperature Reactor (VHTR) , 2010 .

[10]  Kenji Yokoyama,et al.  Mock-up test results of monoblock-type CFC divertor armor for JT-60SA , 2009 .

[11]  S. Chi,et al.  Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades , 2008 .

[12]  S. Chi,et al.  Comparison of 3 MeV C+ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes , 2008 .

[13]  Y. Katoh,et al.  Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature , 2008 .

[14]  T. Burchell Irradiation Induced Creep Behavior of H-451 Graphite , 2008 .

[15]  J. Tojo Production process and major applications for isotropic graphite , 2008 .

[16]  L. Snead,et al.  The effect of neutron irradiation damage on the properties of grade NBG-10 graphite , 2007 .

[17]  H. No,et al.  Experimental study on the oxidation of nuclear graphite and development of an oxidation model , 2006 .

[18]  N. Noda,et al.  Behavior of actively cooled mock-ups with plasma sprayed tungsten coating under high heat flux conditions , 2006 .

[19]  S. Masuzaki,et al.  Design and thermal performance of an improved mechanically attached module for divertor plate of LHD , 2005 .

[20]  Isao Minatsuki,et al.  The role of Japan's industry in the HTTR design and its construction , 2004 .

[21]  Kazuhiko Kunitomi,et al.  Overview of HTTR design features , 2004 .

[22]  H. Atsumi,et al.  Hydrogen absorption and transport in graphite materials , 2003 .

[23]  Huaihe Song,et al.  Self-sinterability of mesocarbon microbeads (MCMB) for preparation of high-density isotropic carbon , 2003 .

[24]  R. Causey,et al.  Hydrogen isotope retention and recycling in fusion reactor plasma-facing components , 2002 .

[25]  G. Neighbour,et al.  The variation of compressive strength of AGR moderator graphite with increasing thermal weight loss , 2001 .

[26]  Steven J. Zinkle,et al.  ITER R&D: Vacuum Vessel and In-Vessel Components: Materials Development and Test , 2001 .

[27]  N. Noda,et al.  Changes of composition and microstructure of joint interface of tungsten coated carbon by high heat flux , 2000 .

[28]  N. Noda,et al.  High heat flux test of actively cooled tungsten-coated carbon divertor mock-ups , 2000 .

[29]  R. Sakamoto,et al.  Behavior of plasma-sprayed tungsten coatings on CFC and graphite under high heat load , 1999 .

[30]  T. Konishi,et al.  Change in Electrical Resistivity of Nuclear Graphite and Carbon Materials during Low Cycle Fatigue , 1999 .

[31]  S. Ishiyama,et al.  Biaxial Fatigue Strength of a Fine-Grained Isotropic Graphite for HTTR , 1998 .

[32]  R. Aymar,et al.  Present status and future prospect of the ITER project , 1998 .

[33]  M. Shoji,et al.  An Overview of the Large Helical Device Project , 1998 .

[34]  T. Sogabe,et al.  Effects of titanium impregnation on the thermal conductivity of carbon/copper composite materials , 1998 .

[35]  A. Sagara,et al.  Developments and high heat flux tests of divertor components for LHD , 1998 .

[36]  G. T. Yahr,et al.  Biaxial Strength and Fracture Criterion for HTGR Graphites , 1997, Journal of Nuclear Science and Technology.

[37]  V. Alimov,et al.  Hydrogen retention in plasma-facing materials and its consequences on tokamak operation , 1997 .

[38]  E. L. Fuller,et al.  Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110 , 1997 .

[39]  Shoji Takada,et al.  Evaluation of aseismic integrity in the HTTR core-bottom structure V. On the static and dynamic behavior of graphitic HTTR key-keyway structures , 1996 .

[40]  M. Inagaki,et al.  Pore Analysis of Isotropic Graphite using Image Processing of Optical Micrographs , 1996 .

[41]  Timothy D. Burchell,et al.  The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite , 1996 .

[42]  Barney Lee Doyle,et al.  Hydrogen adsorption on and solubility in graphites , 1995 .

[43]  Hiroshi Sekimoto,et al.  Burn-off and Production of CO and CO2 in the Oxidation of Nuclear Reactor-Grade Graphites in a Flow System , 1994 .

[44]  T. Shikama,et al.  Trapping and detrapping of hydrogen in carbon-based materials exposed to hydrogen gas , 1994 .

[45]  Tatsuo Iyoku,et al.  Evaluation of aseismic integrity in HTTR core-bottom structure. I: Aseismic test for core-bottom structure , 1994 .

[46]  K. Kuroda,et al.  An Evaluation of Mechanical Properties of Carbon Materials by Hardness Test , 1993 .

[47]  T. Maruyama,et al.  Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials , 1992 .

[48]  T. Shikama,et al.  Hydrogen solubility and diffusivity in neutron-irradiated graphite , 1992 .

[49]  K. Fujii,et al.  Physics and engineering design studies on the Large Helical Device , 1992 .

[50]  T. Sogabe,et al.  Relationship Between Gas Permeability and Open Pore of Carbon , 1992 .

[51]  Toshiyuki Tanaka,et al.  Present status of the High Temperature Engineering Test Reactor (HTTR) , 1991 .

[52]  T. Arai,et al.  Assessment of Heterogeneity and Anisotropy of IG-110 Graphite for Nuclear Components. , 1991 .

[53]  S. Ishiyama,et al.  Fatigue Failure and Fracture Mechanics of Graphites for High Temperature Engineering Testing Reactor , 1991 .

[54]  T. Yamashina,et al.  Characterization of Graphite as Fusion First Wall Material and Evaluation of Stability against Plasmas , 1990 .

[55]  S. Ishiyama,et al.  Effect of Stress Ratio on Crack Extension Rate of Fine-Grained Isotronic Nuclear Granhite , 1987 .

[56]  S. Ishiyama,et al.  Measurement of Irradiation Creep Coefficient of Fine–Grained Isotropic Graphite , 1987 .

[57]  H. Kawakami,et al.  Air Oxidation Behavior of Carbon and Graphite Materials for HTGR , 1986 .

[58]  K. Fukuda,et al.  Characteristics of meso-carbon microbeads separated from pitch , 1973 .

[59]  B. Kelly,et al.  High dose fast neutron irradiation of highly oriented pyrolytic graphite , 1971 .

[60]  T. Shibata,et al.  Oxidation Damage Evaluation by Non-Destructive Method for Graphite Components in High Temperature Gas-Cooled Reactor , 2008 .

[61]  H. No,et al.  Analysis of geometrical effects on graphite oxidation through measurement of internal surface area , 2006 .

[62]  H. Atsumi Hydrogen Absorption into Graphite , 2006 .

[63]  A. Varma,et al.  Processing of mesocarbon microbeads to high-performance materials: Part I. Studies towards the sintering mechanism , 2004 .

[64]  P. Carreira,et al.  Self-sintering of carbon mesophase powders : effect of extraction/washing with solvents , 1999 .

[65]  Timothy D. Burchell,et al.  The analysis of irradiation creep experiments on nuclear reactor graphite , 1994 .

[66]  B. T. Kelly,et al.  Analysis of the dimensional changes and structural changes in polycrystalline graphite under fast neutron irradiation , 1993 .

[67]  S. Starke,et al.  Characterization of baking behaviour of carbonaceous materials by dilatation investigations , 1990 .

[68]  S. Yoda,et al.  Behavior of acoustic emission caused by microfracture in polycrystalline graphites , 1990 .

[69]  H. Honda Mesophase Putch and Meso-Carbon Microbeads , 1983 .

[70]  M. Inagaki,et al.  Hydrodynamic studies of dilute pitch solutions: The shape and size of pitch molecules , 1983 .

[71]  M. Inagaki,et al.  The influence of temperature and solvent on intrinsic viscosity of fractionated pitches , 1983 .

[72]  M. Inagaki,et al.  Determination of intrinsic viscosity of fractionated pitches and discussion on the shape and size of pitch molecules , 1981 .

[73]  M. Inagaki,et al.  Determination of viscoelastic properties of pitches by torsional creep , 1981 .