Parametrizations of Collinear and kT-Dependent Parton Densities in Proton

A new type of parametrization for parton distribution functions in the proton, based on their Q2-evolution at large and small x values, is constructed. In our analysis, the valence and nonsinglet parts obey the Gross–Llewellyn–Smith and Gottfried sum rules, respectively. For the singlet quark and gluon densities, momentum conservation is taken into account. Then, using the Kimber–Martin–Ryskin prescription, we extend the consideration to Transverse Momentum Dependent (TMD, or unintegrated) gluon and quark distributions in the proton, which currently plays an important role in a the number of phenomenological applications. The analytical expressions for the latter, valid for both low and large x, are derived for the first time.

[1]  A. Lipatov,et al.  The role of initial gluon emission in double $J/\psi$ production at central rapidities , 2022, 2205.12018.

[2]  R. Maciuła,et al.  Production of forward heavy-flavour dijets at the LHCb within $k_{T}$-factorization approach , 2022, 2202.07585.

[3]  J. Niehues,et al.  Impact of jet-production data on the next-to-next-to-leading-order determination of HERAPDF2.0 parton distributions , 2021, The European Physical Journal C.

[4]  M. Modarres,et al.  On the ambiguity between differential and integral forms of the Martin–Ryskin–Watt unintegrated parton distribution function model , 2021, The European Physical Journal C.

[5]  J. Latorre,et al.  An open-source machine learning framework for global analyses of parton distributions , 2021, The European Physical Journal C.

[6]  A. Lipatov,et al.  Transverse momentum dependent parton densities in processes with heavy quark generations , 2021, Physical Review D.

[7]  Alan D. Martin,et al.  Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs , 2020, The European Physical Journal C.

[8]  B. Guiot Pathologies of the Kimber-Martin-Ryskin prescriptions for unintegrated PDFs: Which prescription should be preferred? , 2019, Physical Review D.

[9]  J. Huston,et al.  New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC , 2019, 1912.10053.

[10]  A. Kotikov,et al.  Antishadowing in the Rescaling Model at x ~ 0.1 , 2018, Physics of Particles and Nuclei Letters.

[11]  H. Jung,et al.  Employing RHIC and LHC data to determine the transverse momentum dependent gluon density in a proton , 2018, Physical Review D.

[12]  V. Krivokhizhin,et al.  Gottfried Sum Rule in QCD Nonsinglet Analysis of DIS Fixed-Target Data , 2018 .

[13]  A. Staśto,et al.  On the use of the KMR unintegrated parton distribution functions , 2018, Physics Letters B.

[14]  V. Saleev,et al.  On the one-loop calculations with Reggeized quarks , 2017, 1709.06246.

[15]  M. Malyshev,et al.  Inclusive Higgs boson production at the LHC in the kt-factorization approach , 2017, 1708.04057.

[16]  A. Kotikov,et al.  Application of the rescaling model at small Bjorken $x$ values , 2017, 1706.01849.

[17]  R. Placakyte,et al.  Parton Distribution Functions, $\alpha_s$ and Heavy-Quark Masses for LHC Run II , 2017, 1701.05838.

[18]  A. Kotikov,et al.  Q2-evolution of parton densities at small x values. Charm contribution in the combined H1 and ZEUS F2 data , 2016, Physics of Particles and Nuclei.

[19]  F. G. Celiberto,et al.  Inclusive three- and four-jet production in multi-Regge kinematics at the LHC , 2016, 1611.04813.

[20]  V. Radescu,et al.  Transverse momentum dependent (TMD) parton distribution functions: status and prospects , 2015, 1507.05267.

[21]  A. Kotikov,et al.  Q2 evolution of parton distributions at small values of x: Effective scale for combined H1 and ZEUS data on the structure function F2 , 2015 .

[22]  V. Krivokhizhin,et al.  Strong coupling constant from QCD analysis of the fixed-target DIS data , 2015 .

[23]  A. Kotikov Parton distributions at low x and gluon- and quark average multiplicities , 2015, 1502.07108.

[24]  Alan D. Martin,et al.  Parton distributions in the LHC era: MMHT 2014 PDFs , 2014, The European physical journal. C, Particles and fields.

[25]  V. Krivokhizhin,et al.  Improved nonsinglet QCD analysis of fixed-target DIS data , 2014, 1411.1236.

[26]  P. Jimenez-Delgado,et al.  Delineating parton distributions and the strong coupling , 2014, 1403.1852.

[27]  A. Kotikov,et al.  $Q^2$-evolution of parton densities at small $x$ values and H1 and ZEUS experimental data , 2014, 1402.3703.

[28]  H. Jung,et al.  Transverse momentum dependent gluon density from DIS precision data , 2013, 1312.7875.

[29]  A. Kotikov,et al.  Q2-evolution of parton densities at small x values. Combined H1 and ZEUS F2 data , 2012, Physics of Particles and Nuclei.

[30]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[31]  A. Illarionov,et al.  F2c at low x , 2011, 1104.3895.

[32]  V. Krivokhizhin,et al.  Analytic and “frozen” coupling constants in QCD up to NNLO from DIS data , 2010, 1109.1375.

[33]  A. Illarionov,et al.  New type of parametrization for parton distributions , 2010, 1005.3772.

[34]  S. Forte,et al.  The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders , 2010, 1004.0962.

[35]  V. Krivokhizhin,et al.  QCD coupling constant at next-to-next-to-leading order from DIS data , 2010 .

[36]  Alan D. Martin,et al.  NLO prescription for unintegrated parton distributions , 2009, 0909.5529.

[37]  V. Krivokhizhin,et al.  Functions of the nucleon structure and determination of the strong coupling constant , 2009 .

[38]  B. Kniehl,et al.  Small- x behavior of the structure function F 2 and its slope ? ln F 2 / ? ln ( 1 / x ) for frozen , 2009, 0906.1925.

[39]  B. Kniehl,et al.  Heavy-quark contributions to the ratio F(L)/F(2) at low x , 2008, 0801.1502.

[40]  Dubna,et al.  Small x behavior of parton distributions: a study of higher twist effects , 2004, hep-ph/0402173.

[41]  A. Sherstnev,et al.  Parton distributions for LO generators , 2007, 0711.2473.

[42]  A. Kotikov Deep inelastic scattering: Q ^2 dependence of structure functions , 2007 .

[43]  A. Lipatov,et al.  Longitudinal structure function FL: Perturbative QCD and kT-factorization versus experimental data at fixed W , 2004, hep-ph/0403135.

[44]  Alan D. Martin,et al.  Unintegrated parton distributions and inclusive jet productionat HERA , 2003, hep-ph/0306169.

[45]  A. Lipatov,et al.  The contribution of off-shell gluons to the longitudinal structure function FL , 2002, hep-ph/0207226.

[46]  G. Parente,et al.  Small-x behavior of the slope dlnF2/dln(1/x) in the perturbative QCD framework , 2002, hep-ph/0207276.

[47]  A. V. Sidorov,et al.  Improved fits to the xF3 CCFR data at the next-to-next-to-leading order and beyond , 2007 .

[48]  V. Krivokhizhin,et al.  A systematic study of QCD coupling constant from deep-inelastic measurements , 2001, hep-ph/0108224.

[49]  A. Lipatov,et al.  The contribution of off-shell gluons to the structure functions F2 and $F_{\mathrm {L}}^c$ and the unintegrated gluon distributions , 2001, hep-ph/0107135.

[50]  Alan D. Martin,et al.  Unintegrated parton distributions , 2001, hep-ph/0101348.

[51]  A. V. Sidorov,et al.  Higher twists and αs(MZ) extractions from the NNLO QCD analysis of the CCFR data for the xF3 structure function , 1999, hep-ph/9905310.

[52]  G. Parente,et al.  Small x behavior of parton distributions with soft initial conditions , 1998, hep-ph/9807249.

[53]  G. Parente,et al.  QCD relations between structure functions at small x , 1997, hep-ph/9710252.

[54]  G. Parente,et al.  Indirect determination of the ratio R=σL/σT at small x from HERA data , 1997 .

[55]  A. Kotikov,et al.  Next-to-next-to-leading order QCD analysis of the revised CCFR data for xF 3 structure function and , 1997, hep-ph/9706534.

[56]  M. Karliner,et al.  Padé approximants, optimal renormalization scales, and momentum flow in Feynman diagrams , 1997, hep-ph/9706467.

[57]  A. Kotikov,et al.  Qcd-parameterization of quark and gluon distributions in the nucleon. The case of “hard” gluons , 1997 .

[58]  L. Mankiewicz,et al.  On the analytical approximation to the GLAP evolution at small x and moderate Q 2 , 1996, hep-ph/9612297.

[59]  A. Kotikov,et al.  The Longitudinal Structure Function FL as a Function of F2 and dF2/dln Q2 at Small x. The Next-to-Leading Analysis , 1996, hep-ph/9605207.

[60]  A. V. Sidorov,et al.  Next-to-next-to-leading order QCD analysis of the CCFR data for xF3 and F2 structure functions of the deep-inelastic neutrino-nucleon scattering , 1996 .

[61]  A. Sidorov QCD analysis of the CCFR data for x F(3) and higher twist contribution , 1996, hep-ph/9607275.

[62]  A. Kotikov,et al.  The gluon distribution as a function of F2 and dF2dlnQ2 at small x. The next-to-leading analysis , 1995, hep-ph/9512410.

[63]  G. Marchesini QCD coherence in the structure function and associated distributions at small x , 1994, hep-ph/9412327.

[64]  A. Kotikov Small x behaviour of DIS cross section ratio R(x,Q2) = σLσT☆ , 1994 .

[65]  Ingram,et al.  Reevaluation of the Gottfried sum. , 1994, Physical review. D, Particles and fields.

[66]  Kotikov Gluon distribution as a function of FL and F2 at small x. , 1994, Physical review. D, Particles and fields.

[67]  S. Forte,et al.  Double asymptotic scaling at HERA , 1994, hep-ph/9405320.

[68]  V. Krivokhizhin,et al.  Next-to-next-to-leading order QCD analysis of DIS structure functions , 1994, hep-ph/9405290.

[69]  G. Marchesini,et al.  Small-x behaviour of initial state radiation in perturbative QCD☆ , 1990 .

[70]  G. Marchesini,et al.  QCD Coherence in initial state radiation , 1990 .

[71]  D. Kazakov,et al.  Total αs correction to the deep-inelastic scattering cross-sections ratio R = σL/σT in QCD , 1988 .

[72]  M. Ciafaloni Coherence effects in initial jets at small Q2/s , 1988 .

[73]  Francisco J. Yndurain,et al.  Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons , 1983 .

[74]  C. Lopez,et al.  Behaviour at x = 0, 1, sum rules and parametrizations for structure functions beyond the leading order , 1981 .

[75]  A. Buras Asymptotic freedom in deep inelastic processes in the leading order and beyond , 1980 .

[76]  C. Lopez,et al.  Behaviour of deep inelastic structure functions near physical region endpoints from QCD , 1980 .

[77]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[78]  Y. Dokshitzer,et al.  Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. , 1977 .

[79]  F. Wilczek,et al.  Possible non-Regge behavior of electroproduction structure functions , 1974 .

[80]  L. Lipatov Parton model and perturbation theory , 1974 .

[81]  David Gross,et al.  How to Test Scaling in Asymptotically Free Theories , 1974 .

[82]  D. Gross,et al.  Hadronic Form-Factors in Asymptotically Free Field Theories , 1974 .

[83]  S. Brodsky,et al.  SCALING LAWS AT LARGE TRANSVERSE MOMENTUM , 1973 .

[84]  V. A. Matveev,et al.  Automodellism in the large-angle elastic scattering and structure of hadrons , 1973 .

[85]  V. Gribov,et al.  DEEP INELASTIC ep-SCATTERING IN A PERTURBATION THEORY. , 1972 .

[86]  D. Gross,et al.  High-energy neutrino - nucleon scattering, current algebra and partons , 1969 .

[87]  K. Gottfried Sum rule for high-energy electron - proton scattering , 1967 .