PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT

On 7 January 2014 an X1.2 flare and CME with a radial speed $\approx$2500 km s$^{-1}$ was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth ($\approx$36 hours) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of $\approx$49 hours and a $K_{\rm P}$ geomagnetic index of only $3-$. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)-ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in-situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in-situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA--ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hours for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.

[1]  Yuming Wang,et al.  Full‐halo coronal mass ejections: Arrival at the Earth , 2014, 1406.4589.

[2]  Yong-Jae Moon,et al.  New Geoeffective Parameters of Very Fast Halo Coronal Mass Ejections , 2005 .

[3]  N. Gopalswamy,et al.  GROUND LEVEL ENHANCEMENT IN THE 2014 JANUARY 6 SOLAR ENERGETIC PARTICLE EVENT , 2014, 1406.7172.

[4]  Y. Liu Magnetic Field Overlying Solar Eruption Regions and Kink and Torus Instabilities , 2008 .

[5]  M. L. Mays,et al.  Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model , 2015, 1504.04402.

[6]  Dusan Odstrcil,et al.  Distortion of the heliospheric plasma sheet by interplanetary shocks , 1996 .

[7]  Dusan Odstrcil,et al.  Numerical simulation of the 12 May 1997 interplanetary CME event , 2004 .

[8]  Emil Kraaikamp,et al.  Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars , 2015, Nature communications.

[9]  D. Odstrcil,et al.  Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt , 1999 .

[10]  W. Liu,et al.  Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model , 2002 .

[11]  A. Vourlidas,et al.  Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging , 2013, 1310.6680.

[12]  O. C. St. Cyr,et al.  Speeds of coronal mass ejections: SMM observations from 1980 and 1984‐1989 , 1994 .

[13]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[14]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[15]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[16]  C. Arge,et al.  Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates , 2000 .

[17]  W. Thompson Coordinate systems for solar image data , 2006 .

[18]  M. Wheatland,et al.  Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison of Methods , 2006 .

[19]  D. Odstrcil,et al.  INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS , 2011, 1110.0827.

[20]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[21]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[22]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[23]  Dusan Odstrcil,et al.  Ensemble forecasting of coronal mass ejections using the WSA‐ENLIL with CONED Model , 2013 .

[24]  R. K. Ulrich,et al.  The Global Oscillation Network Group (GONG) Project , 1996, Science.

[25]  Matthew West,et al.  On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data , 2010 .

[26]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[27]  Haimin Wang,et al.  CME Earthward Direction as an Important Geoeffectiveness Indicator , 2008 .

[28]  D. Odstrcil,et al.  Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 2. CME launched adjacent to the streamer belt , 1999 .

[29]  Mike Hapgood,et al.  SPACE PHYSICS COORDINATE TRANSFORMATIONS : A USER GUIDE , 1992 .

[30]  A. Vourlidas,et al.  Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth , 2013, 1303.2574.

[31]  Jie Zhang,et al.  ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS? , 2015 .

[32]  R. A. Mewaldt,et al.  The Advanced Composition Explorer , 1988 .

[33]  C. N. Arge,et al.  Ensemble Modeling of CME Propagation , 2013 .

[34]  A. B. Galvin,et al.  CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU , 2014, 1404.3579.

[35]  C. Schrijver,et al.  Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .

[36]  Yuming Wang,et al.  A statistical study on the geoeffectiveness of Earth‐directed coronal mass ejections from March 1997 to December 2000 , 2002 .

[37]  N. Gopalswamy,et al.  Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption , 2004 .

[38]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[39]  A. Vourlidas,et al.  Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture , 2015 .

[40]  Y. Moon,et al.  Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model , 2013 .

[41]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[42]  Jie Zhang,et al.  PREDICTING THE ARRIVAL TIME OF CORONAL MASS EJECTIONS WITH THE GRADUATED CYLINDRICAL SHELL AND DRAG FORCE MODEL , 2015, 1505.00884.

[43]  Hakan Svedhem,et al.  Venus Express mission , 2009 .

[44]  Y. Liu,et al.  RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING , 2010, 1009.1414.

[45]  T. Török,et al.  Confined and Ejective Eruptions of Kink-unstable Flux Ropes , 2005, astro-ph/0507662.

[46]  Frederick J. Rich,et al.  A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables , 2007 .

[47]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[48]  W. Gonzalez,et al.  The association of coronal mass ejections with their effects near the Earth , 2005 .

[49]  L. Ofman,et al.  Cone model for halo CMEs: Application to space weather forecasting , 2004 .

[50]  S. Wu,et al.  Direct Detection of a Coronal Mass Ejection-Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images , 2003 .

[51]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .