Monotonic bounds in multistage mixed-integer stochastic programming

Multistage stochastic programs bring computational complexity which may increase exponentially in real case problems. For this reason approx- imation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal solution are very useful. In this pa- per we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic program. These results also apply to stochas- tic multistage mixed integer linear programs. Chains of inequalities among the new quantities are provided in relation to the optimal objective value, the wait-and-see solution and the expected result of using the expected value so- lution. Numerical results on a supply real case transportation problem have been provided.

[1]  Hanif D. Sherali,et al.  On solving discrete two-stage stochastic programs having mixed-integer first- and second-stage variables , 2006, Math. Program..

[2]  Ilan Vertinsky,et al.  Sharp Bounds on the Value of Perfect Information , 1977, Oper. Res..

[3]  John R. Birge,et al.  The value of the stochastic solution in stochastic linear programs with fixed recourse , 1982, Math. Program..

[4]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[5]  Kai Huang,et al.  The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty , 2009, Oper. Res..

[6]  D. Kuhn Generalized Bounds for Convex Multistage Stochastic Programs , 2004 .

[7]  Daniel Kuhn,et al.  Aggregation and discretization in multistage stochastic programming , 2008, Math. Program..

[8]  A. Madansky Inequalities for Stochastic Linear Programming Problems , 1960 .

[9]  Stein W. Wallace,et al.  Analyzing the quality of the expected value solution in stochastic programming , 2012, Ann. Oper. Res..

[10]  L. Escudero,et al.  The value of the stochastic solution in multistage problems , 2007 .

[11]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[12]  Karl Frauendorfer,et al.  Solving SLP Recourse Problems with Arbitrary Multivariate Distributions - The Dependent Case , 1988, Math. Oper. Res..

[13]  A. Madansky Bounds on the Expectation of a Convex Function of a Multivariate Random Variable , 1959 .

[14]  A. Ben-Tal,et al.  Bounds on the Expectation of a Convex Function of a Random Variable: With Applications to Stochastic Programming , 1977, Oper. Res..

[15]  Daniel Kuhn,et al.  An Information-Based Approximation Scheme for Stochastic Optimization Problems in Continuous Time , 2009, Math. Oper. Res..

[16]  Suvrajeet Sen,et al.  A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems , 2004, Manag. Sci..

[17]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[18]  John R. Birge,et al.  Aggregation bounds in stochastic linear programming , 1985, Math. Program..

[19]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[20]  Hanif D. Sherali,et al.  Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming , 2006, Math. Program..

[21]  Shabbir Ahmed,et al.  The value of multi-stage stochastic programming in capacity planning under uncertainty , 2005 .

[22]  Samer Takriti,et al.  Improving aggregation bounds for two-stage stochastic programs , 1999, Oper. Res. Lett..

[23]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[24]  Florian A. Potra,et al.  Stochastic versus Robust Optimization for a Transportation Problem , 2015 .

[25]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[26]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[27]  H. Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[28]  Andrew J. Schaefer,et al.  A hierarchy of bounds for stochastic mixed-integer programs , 2013, Math. Program..

[29]  Maarten H. van der Vlerk Convex approximations for a class of mixed-integer recourse models , 2010, Ann. Oper. Res..

[30]  W. T. Ziemba,et al.  Bounds on the value of information in uncertain decision problems , 1975 .

[31]  Mordecai Avriel,et al.  The Value of Information and Stochastic Programming , 1970, Oper. Res..

[32]  C. HuangC.,et al.  Bounds on the Expectation of a Convex Function of a Random Variable , 1977 .

[33]  Marida Bertocchi,et al.  Bounds in Multistage Linear Stochastic Programming , 2014, J. Optim. Theory Appl..

[34]  Alexander Shapiro,et al.  Stochastic programming approach to optimization under uncertainty , 2007, Math. Program..

[35]  R. Schultz,et al.  Two-stage stochastic integer programming : a survey , 1996 .