Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH 2 – 1 . 1 MgH
暂无分享,去创建一个
M. Fichtner | J. G. Vitillo | G. Kalantzopoulos | S. Deledda | Linder | I. Bürger | M. Baricco | J. J. Hu | M. | J. Vitillo | J. Hu
[1] purewal purewal. Hydrogen Storage Materials , 2014 .
[2] M. Fichtner,et al. Preparation, scale-up and testing of nanoscale, doped amide systems for hydrogen storage , 2013 .
[3] M. Fichtner,et al. Additive Effects of LiBH4 and ZrCoH3 on the Hydrogen Sorption of the Li-Mg-N-H Hydrogen Storage System , 2012 .
[4] V. Stavila,et al. New insights into the mechanism of activation and hydrogen absorption of (2LiNH2–MgH2) , 2012 .
[5] B. Hardy,et al. Acceptability envelope for metal hydride-based hydrogen storage systems , 2012 .
[6] D. Bathen,et al. HT‐PEM Fuel Cell System with Integrated Complex Metal Hydride Storage Tank , 2011 .
[7] David Ruprecht. Entwicklung, Konstruktion und Fertigung eines Reaktors zur Untersuchung der Kinetik von Metallhydriden , 2011 .
[8] Alan K. Burnham,et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .
[9] Shumao Wang,et al. Improved hydrogen storage performance of the LiNH2–MgH2–LiBH4 system by addition of ZrCo hydride , 2010 .
[10] Georg Fieg,et al. Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption , 2010 .
[11] Ulrich Eberle,et al. Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.
[12] M. Fichtner,et al. Hydrogenation Reaction Pathway in Li2Mg(NH)2 , 2009 .
[13] R. Ahuja,et al. Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. , 2009, Angewandte Chemie.
[14] O. B. Jensen,et al. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank , 2009 .
[15] Yongfeng Liu,et al. Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH 4 , 2008 .
[16] S. Orimo,et al. Dehydriding and rehydriding properties of Mg(NH2)2–LiH systems , 2007 .
[17] T. Blach,et al. Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts , 2007 .
[18] Donald J. Siegel,et al. Hydrogen storage properties of 2LiNH2 + LiBH4 + MgH2 , 2007 .
[19] J. Tarascon,et al. Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system , 2007 .
[20] David P. Wilkinson,et al. High temperature PEM fuel cells , 2006 .
[21] W. Luo. Corrigendum to “(LiNH2–MgH2): a viable hydrogen storage system”: [J. Alloys Comp. 381 (2004) 284–287] , 2004 .
[22] Weifang Luo,et al. (LiNH2-MgH2): a viable hydrogen storage system , 2004 .
[23] S. Orimo,et al. Li–N based hydrogen storage materials , 2004 .
[24] K. Gross,et al. A kinetics model of hydrogen absorption and desorption in Ti-doped NaAlH4 , 2004 .
[25] K. L. Tan,et al. Interaction of hydrogen with metal nitrides and imides , 2002, Nature.
[26] M. Ron. The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition , 1999 .
[27] Manfred Groll,et al. Heat and mass transfer in metal hydride reaction beds: Experimental and theoretical results , 1987 .