1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation

In this paper, we report on 1.2-kV-class vertical GaN-based trench metal–oxide–semiconductor field-effect transistors (MOSFETs) on a free-standing GaN substrate with a low specific on-resistance. A redesigned epitaxial layer structure following our previous work with a regular hexagonal trench gate layout enables us to reduce the specific on-resistance to as low as 1.8 mΩcm2 while obtaining a sufficient blocking voltage for 1.2-kV-class operation. Normally-off operation with a threshold voltage of 3.5 V is also demonstrated. To the best of our knowledge, this is the first report on vertical GaN-based MOSFETs with a specific on-resistance of less than 2 mΩcm2.

[1]  S. Keller,et al.  High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates , 2006, IEEE Electron Device Letters.

[2]  G. Simin,et al.  The 1.6-kV AlGaN/GaN HFETs , 2006, IEEE Electron Device Letters.

[3]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[4]  H. Matsuo,et al.  8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation , 2007, 2007 IEEE International Electron Devices Meeting.

[5]  Tetsu Kachi,et al.  GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching , 2008 .

[6]  J. Wurfl,et al.  Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer , 2011, 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs.

[7]  Hirotaka Otake,et al.  Vertical GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistors on GaN Bulk Substrates , 2008 .

[8]  Nariaki Ikeda,et al.  Over 1.7 kV normally-off GaN hybrid MOS-HFETs with a lower on-resistance on a Si substrate , 2011, 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs.

[9]  R. Dupuis,et al.  Optimization of Fe doping at the regrowth interface of GaN for applications to III-nitride-based heterostructure field-effect transistors , 2007 .

[10]  Denis Marcon,et al.  Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2- $\mu\hbox{m}$ Buffer Thickness by Local Substrate Removal , 2011, IEEE Electron Device Letters.

[11]  Ming Su,et al.  Prospects for the application of GaN power devices in hybrid electric vehicle drive systems , 2013 .

[12]  Hirotaka Otake,et al.  GaN-Based Trench Gate Metal Oxide Semiconductor Field Effect Transistors with Over 100 cm2/(V s) Channel Mobility , 2007 .

[13]  U. K. Mishra,et al.  CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion , 2012, IEEE Electron Device Letters.

[14]  T. Egawa Heteroepitaxial growth and power electronics using AlGaN/GaN HEMT on Si , 2012, 2012 International Electron Devices Meeting.

[15]  Kinam Kim,et al.  1.6kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[16]  Daisuke Ueda,et al.  Blocking-voltage boosting technology for GaN transistors by widening depletion layer in Si substrates , 2010, 2010 International Electron Devices Meeting.

[17]  H. Sakairi,et al.  High performance SiC trench devices with ultra-low ron , 2011, 2011 International Electron Devices Meeting.

[18]  David C. Look,et al.  On the nitrogen vacancy in GaN , 2003 .

[19]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[20]  T. Kachi,et al.  A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor , 2007 .

[21]  D. Bour,et al.  1.5-kV and 2.2-m (Omega ) -cm (^{2}) Vertical GaN Transistors on Bulk-GaN Substrates , 2014 .