An Adaptive, High-Order Finite Element Method for Aeroengine Acoustics

[1]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[2]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[3]  R. J. Astley,et al.  Stability and accuracy of finite element methods for flow acoustics. II: two-dimensional effects , 2005 .

[4]  M. K. Myers,et al.  On the acoustic boundary condition in the presence of flow , 1980 .

[5]  R. Jeremy Astley,et al.  Numerical methods for noise propagation in moving flows, with application to turbofan engines , 2009 .

[6]  Hadrien Beriot,et al.  Efficient implementation of high‐order finite elements for Helmholtz problems , 2016 .

[7]  M. Genito,et al.  Achievements in the numerical modeling of fan noise radiation from aero-engines , 2008 .

[8]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[9]  Stéphane Caro,et al.  New advances in the use of Actran/TM for nacelle simulations , 2008 .

[10]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[11]  Walter Eversman,et al.  THE BOUNDARY CONDITION AT AN IMPEDANCE WALL IN A NON-UNIFORM DUCT WITH POTENTIAL MEAN FLOW , 2001 .

[12]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..