Novel insight into neutral medium as electrolyte for high-voltage supercapacitors

This paper is focused on neutral aqueous medium, i.e.lithium, sodium and potassium sulfate solutions in a wide range of concentrations (0.1–2.5 mol L−1) as promising electrolytes for electrochemical capacitors because they are cheap, non-corrosive and allow applying diverse current collectors. These properties make the capacitor assembling process much easier and cheaper. Additionally, such electrolytes are electrochemically stable and environmentally friendly. Electrochemical investigations carried out especially for 1 mol L−1Li2SO4 aqueous solution confirmed the possibility of efficient capacitor work in a wider voltage range, i.e. even at 2.2 V without any significant capacitance fade during 15 000 cycles. The physicochemical properties of ions (i.e. solvation, diffusion or mobility) and their influence on the capacitor electrochemical behaviour are considered.

[1]  F. Béguin,et al.  Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids , 2010 .

[2]  J. Amarilla,et al.  RuO2·xH2O/NiO composites as electrodes for electrochemical capacitors: Effect of the RuO2 content and the thermal treatment on the specific capacitance , 2006 .

[3]  Yuping Wu,et al.  Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes , 2008 .

[4]  P. Pickup,et al.  Performance and low temperature behaviour of hydrous ruthenium oxide supercapacitors with improved power densities , 2008 .

[5]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[6]  E. Frąckowiak,et al.  Hybrid materials for supercapacitor application , 2010 .

[7]  Maurizio Biso,et al.  Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes , 2008 .

[8]  A. B. Fuertes,et al.  Influence of pore structure on electric double-layer capacitance of template mesoporous carbons , 2004 .

[9]  E. Frąckowiak,et al.  Carbon materials modified by plasma treatment as electrodes for supercapacitors , 2010 .

[10]  E. Frąckowiak,et al.  Carbon nanotubes and their composites in electrochemical applications , 2011 .

[11]  J. Rasaiah,et al.  Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 °C† , 1996 .

[12]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[13]  Pierre-Louis Taberna,et al.  Continuous carbide-derived carbon films with high volumetric capacitance , 2011 .

[14]  Grzegorz Lota,et al.  Striking capacitance of carbon/iodide interface , 2009 .

[15]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[16]  E. Frąckowiak,et al.  Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors , 2008 .

[17]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[18]  Alexander Wokaun,et al.  A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages , 2010 .

[19]  Andrew Burke,et al.  Ultracapacitor technologies and application in hybrid and electric vehicles , 2009 .

[20]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[21]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[22]  R. Pietrzak,et al.  Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea , 2008 .

[23]  J. A. Menéndez,et al.  On the nature of basic sites on carbon surfaces: an overview , 2004 .

[24]  T. Brousse,et al.  Electrolytes for hybrid carbon–MnO2 electrochemical capacitors , 2010 .

[25]  E. Frąckowiak,et al.  Carbon/Layered Double Hydroxide (LDH) Composites for Supercapacitor Application† , 2010 .

[26]  E. Frąckowiak,et al.  Alkali metal iodide/carbon interface as a source of pseudocapacitance , 2011 .

[27]  B. Gao,et al.  A first principles study on the solvation and structure of SO4 2- (H2O)n, n=6-12. , 2004, The Journal of chemical physics.

[28]  E. Frąckowiak,et al.  Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants , 2010 .

[29]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[30]  J. Mccammon,et al.  Sulfate Anion in Water: Model Structural, Thermodynamic, and Dynamic Properties , 1994 .

[31]  F. Béguin,et al.  High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper , 2009 .

[32]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .