The Metric Dimension of Some Generalized Petersen Graphs

<jats:p>The distance <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> between two distinct vertices <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>u</mml:mi></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> in a graph <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> is the length of a shortest <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-path in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>. For an ordered subset <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mi>W</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">{</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">}</mml:mo></mml:math> of vertices and a vertex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>, the code of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> with respect to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math> is the ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>-tuple <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:msub><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>. The set <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math> is a resolving set for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> if every two vertices of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> have distinct codes. The<jats:italic> metric dimension</jats:italic> of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> is the minimum cardinality of a resolving set of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>. In this paper, we first extend the results of the metric dimension of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn mathvariant="normal">3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn mathvariant="normal">4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and study bounds on the metric dimension of the families of the generalized Petersen graphs <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">2</mml:mn><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">3</mml:mn><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>. The obtained results mean that these families of graphs have constant metric dimension.</jats:p>

[1]  Neil Genzlinger A. and Q , 2006 .

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[4]  Zehui Shao,et al.  On the Maximum ABC Index of Graphs With Prescribed Size and Without Pendent Vertices , 2018, IEEE Access.

[5]  Imran Javaid,et al.  On the constant metric dimension of generalized petersen graphs P(n, 4) , 2014 .

[6]  W. Marsden I and J , 2012 .

[7]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[8]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[9]  Ioan Tomescu,et al.  On Metric Dimension of Generalized Petersen Graphs P(n, 3) , 2014, Ars Comb..

[10]  Kaishun Wang,et al.  On the metric dimension of bilinear forms graphs , 2011, Discret. Math..

[11]  Mark E. Johnson Browsable structure-activity datasets , 1999 .

[12]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[13]  Ismael González Yero,et al.  Mixed metric dimension of graphs , 2016, Appl. Math. Comput..

[14]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[15]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[16]  Shabbir Ahmad,et al.  On the metric dimension of generalized Petersen graphs , 2012, Ars Comb..

[17]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[18]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[19]  Lily Chen,et al.  On the [1, 2]-domination number of generalized Petersen graphs , 2018, Appl. Math. Comput..

[20]  N. Duncan Leaves on trees , 2014 .

[21]  Muhammad Imran,et al.  Computing the metric dimension of wheel related graphs , 2014, Appl. Math. Comput..

[22]  Shaohui Wang,et al.  Valency-based topological descriptors of chemical networks and their applications , 2018, Applied Mathematical Modelling.

[23]  M. Watkins,et al.  A theorem on tait colorings with an application to the generalized Petersen graphs , 1969 .

[24]  Xiangxiang Zeng,et al.  Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks , 2016, Briefings Bioinform..

[25]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[26]  Juan A. Rodríguez-Velázquez,et al.  On the metric dimension of corona product graphs , 2011, Comput. Math. Appl..

[27]  Juan A. Rodríguez-Velázquez,et al.  Computing the k-metric dimension of graphs , 2017, Appl. Math. Comput..

[28]  Tao Li,et al.  A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration , 2016, Appl. Math. Comput..

[29]  Gary Chartrand,et al.  The independent resolving number of a graph , 2003 .

[30]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[31]  Gary Chartrand,et al.  On k-dimensional graphs and their bases , 2003, Period. Math. Hung..

[32]  Ping Zhang,et al.  Conditional resolvability in graphs: a survey , 2004, Int. J. Math. Math. Sci..