<jats:p>The distance <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> between two distinct vertices <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>u</mml:mi></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> in a graph <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> is the length of a shortest <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-path in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>. For an ordered subset <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mi>W</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">{</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">}</mml:mo></mml:math> of vertices and a vertex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>, the code of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:math> with respect to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math> is the ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>-tuple <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:msub><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>. The set <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math> is a resolving set for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> if every two vertices of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> have distinct codes. The<jats:italic> metric dimension</jats:italic> of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> is the minimum cardinality of a resolving set of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math>. In this paper, we first extend the results of the metric dimension of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn mathvariant="normal">3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn mathvariant="normal">4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and study bounds on the metric dimension of the families of the generalized Petersen graphs <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">2</mml:mn><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">3</mml:mn><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>. The obtained results mean that these families of graphs have constant metric dimension.</jats:p>
[1]
Neil Genzlinger.
A. and Q
,
2006
.
[2]
Kevin Barraclough,et al.
I and i
,
2001,
BMJ : British Medical Journal.
[3]
Ioan Tomescu,et al.
Metric bases in digital geometry
,
1984,
Comput. Vis. Graph. Image Process..
[4]
Zehui Shao,et al.
On the Maximum ABC Index of Graphs With Prescribed Size and Without Pendent Vertices
,
2018,
IEEE Access.
[5]
Imran Javaid,et al.
On the constant metric dimension of generalized petersen graphs P(n, 4)
,
2014
.
[6]
W. Marsden.
I and J
,
2012
.
[7]
Azriel Rosenfeld,et al.
Landmarks in Graphs
,
1996,
Discret. Appl. Math..
[8]
José Cáceres,et al.
On the metric dimension of some families of graphs
,
2005,
Electron. Notes Discret. Math..
[9]
Ioan Tomescu,et al.
On Metric Dimension of Generalized Petersen Graphs P(n, 3)
,
2014,
Ars Comb..
[10]
Kaishun Wang,et al.
On the metric dimension of bilinear forms graphs
,
2011,
Discret. Math..
[11]
Mark E. Johnson.
Browsable structure-activity datasets
,
1999
.
[12]
András Sebö,et al.
On Metric Generators of Graphs
,
2004,
Math. Oper. Res..
[13]
Ismael González Yero,et al.
Mixed metric dimension of graphs
,
2016,
Appl. Math. Comput..
[14]
R. Sarpong,et al.
Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c
,
2019,
Chemical science.
[15]
Gary Chartrand,et al.
Resolvability in graphs and the metric dimension of a graph
,
2000,
Discret. Appl. Math..
[16]
Shabbir Ahmad,et al.
On the metric dimension of generalized Petersen graphs
,
2012,
Ars Comb..
[17]
W. Hager,et al.
and s
,
2019,
Shallow Water Hydraulics.
[18]
David R. Wood,et al.
On the Metric Dimension of Cartesian Products of Graphs
,
2005,
SIAM J. Discret. Math..
[19]
Lily Chen,et al.
On the [1, 2]-domination number of generalized Petersen graphs
,
2018,
Appl. Math. Comput..
[20]
N. Duncan.
Leaves on trees
,
2014
.
[21]
Muhammad Imran,et al.
Computing the metric dimension of wheel related graphs
,
2014,
Appl. Math. Comput..
[22]
Shaohui Wang,et al.
Valency-based topological descriptors of chemical networks and their applications
,
2018,
Applied Mathematical Modelling.
[23]
M. Watkins,et al.
A theorem on tait colorings with an application to the generalized Petersen graphs
,
1969
.
[24]
Xiangxiang Zeng,et al.
Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
,
2016,
Briefings Bioinform..
[25]
Tsuyoshi Murata,et al.
{m
,
1934,
ACML.
[26]
Juan A. Rodríguez-Velázquez,et al.
On the metric dimension of corona product graphs
,
2011,
Comput. Math. Appl..
[27]
Juan A. Rodríguez-Velázquez,et al.
Computing the k-metric dimension of graphs
,
2017,
Appl. Math. Comput..
[28]
Tao Li,et al.
A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration
,
2016,
Appl. Math. Comput..
[29]
Gary Chartrand,et al.
The independent resolving number of a graph
,
2003
.
[30]
M. Johnson,et al.
Structure-activity maps for visualizing the graph variables arising in drug design.
,
1993,
Journal of biopharmaceutical statistics.
[31]
Gary Chartrand,et al.
On k-dimensional graphs and their bases
,
2003,
Period. Math. Hung..
[32]
Ping Zhang,et al.
Conditional resolvability in graphs: a survey
,
2004,
Int. J. Math. Math. Sci..