Logit Models from Economics and Other Fields: The origins and development of the logit model

This is and updated and somewhat extended version of Chapter 9 of Logit Models from Economics and Other Fields (Cambridge University Press, 2003) which includes additional material obtained since the completion of that book. The text has been adapted so that this paper can be read independently. The paper describes the origins of the logistic function and its history up to the adoption of the logit in bio-assay and the beginning of its wider acceptance in statistics. Its roots spread back to the 19th century, when the function was invented to describe population growth and given its name by the Belgian mathematician Verhulst. Subsequent events have been determined decisively by the individual actions and personal histories of a few scholars: the rediscovery of the growth function is due to Pearl and Reed, the survival of the term logistic to Yule, and the introduction of the function in bio-assay (and hence in statistics in general) to Berkson. ∗University of Amsterdam and Tinbergen Institute, Amsterdam; postal address Baambrugse Zuwe 194, 3645 AM Vinkeveen, the Netherlands; e-mail mars.cram@worldonline.nl. For comments on earlier drafts and ready help in obtaining valuable information about Verhulst, Pearl and Du Pasquier I thank John Glaus (Maine), Jan Sandee (Boskoop), Ida Stamhuis (Amsterdam), Professor G. Vanpaemel (Gent) and Professor J.Aghion (Liège). I am much indebted to the American Philosophical Society, Philadelphia, for permission to consult the Pearl Archives, which contain the correspondence and pocket diaries of Raymond Pearl, and to Robert Cox for his help; to Professor Remy Scheurer (Neuchâtel), who provided invaluable material about Du Pasquier from the archives of the University of Neuchâtel; and to Michel Guillot (Paris) and Anton Barten (Leuven) who kindly assisted me in consulting Du Pasquier’s books at the Bibliothèque Nationale and the University Library, Leuven.

[1]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 1845, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[2]  D. Cox The Regression Analysis of Binary Sequences , 1958 .

[3]  R. Pearl,et al.  On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. I. Bliss THE CALCULATION OF THE DOSAGE-MORTALITY CURVE , 1935 .

[5]  P. Verhulst,et al.  Deuxième Mémoire sur la Loi d'Accroissement de la Population. , 2022 .

[6]  A. Quételet,et al.  Du système social et des lois qui le régissent , 1848 .

[7]  Henri Theil,et al.  A Multinomial Extension of the Linear Logit Model , 1969 .

[8]  Joseph Berkson,et al.  The Application of the Logistic Function to Experimental Data. , 1928 .

[9]  Daniel Adam Les réactions du consommateur devant le prix : contribution aux Études de comportement , 1958 .

[10]  W. Feldberg John Henry Gaddum, 1900-1965 , 1967, Biographical Memoirs of Fellows of the Royal Society.

[11]  E B Wilson The Logistic or Autocatalytic Grid. , 1925, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[13]  J. Berkson Application of the Logistic Function to Bio-Assay , 1944 .

[14]  Jerome Cornfield,et al.  A Statistical Problem Arising from Retrospective Studies , 1956 .

[15]  J. Cornfield,et al.  A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. , 1951, Journal of the National Cancer Institute.

[16]  D. Cox,et al.  The analysis of binary data , 1971 .

[17]  D. Meadows,et al.  The Limits to Growth , 2018, Green Planet Blues.

[18]  G. Fechner Elemente der Psychophysik , 1998 .

[19]  R. McKelvey,et al.  A statistical model for the analysis of ordinal level dependent variables , 1975 .

[20]  L. Tippett Statistical Tables: For Biological, Agricultural and Medical Research , 1954 .

[21]  J. Berkson Why I Prefer Logits to Probits , 1951 .

[22]  J. Aitchison,et al.  The Lognormal Distribution. , 1958 .

[23]  A. Rivlin,et al.  Economic Choices , 2001 .

[24]  J. Berkson MINIMUM CHI-SQUARE, NOT MAXIMUM LIKELIHOOD! , 1980 .

[25]  R. Pearl,et al.  THE LOGISTIC CURVE AND THE CENSUS COUNT OF I930. , 1930, Science.

[26]  R. Pearl,et al.  THE LOGISTIC CURVE AND THE CENSUS COUNT OF 1940. , 1940, Science.

[27]  N Mantel,et al.  Models for complex contingency tables and polychotomous dosage response curves. , 1966, Biometrics.

[28]  Calcul des probabilités et théorie des erreurs , 1930 .

[29]  R Pearl,et al.  A Further Note on the Mathematical Theory of Population Growth. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Knowles,et al.  The Biology of Death , 1923, The Indian medical gazette.

[31]  K. Pearson,et al.  Tables for statisticians and biometricians , 1914 .

[32]  E B Wilson,et al.  The Determination of L.D.50 and Its Sampling Error in Bio-Assay. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Stanley Lemeshow,et al.  Applied Logistic Regression, Second Edition , 1989 .

[34]  T. Malthus Essay on the Principle of Population , 2001 .

[35]  C. I. Bliss,et al.  THE METHOD OF PROBITS. , 1934, Science.

[36]  P. Verhulst Notice sur la loi que la population pursuit dans son accroissement , 1838 .

[37]  David Salsburg The Lady Tasting Tea , 2002 .

[38]  J. Gurland,et al.  Polychotomous Quantal Response in Biological Assay , 1960 .

[39]  Rory A. Fisher,et al.  256: The Analysis of Variance with Various Binomial Transformations. , 1954 .

[40]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .