Ultrafast Energy Transfer in Biomimetic Multistrand Nanorings

We report the synthesis of LH2-like supramolecular double- and triple-stranded complexes based upon porphyrin nanorings. Energy transfer from the antenna dimers to the π-conjugated nanoring occurs on a subpicosecond time scale, rivaling transfer rates in natural light-harvesting systems. The presence of a second nanoring acceptor doubles the transfer rate, providing strong evidence for multidirectional energy funneling. The behavior of these systems is particularly intriguing because the local nature of the interaction may allow energy transfer into states that are, for cyclic nanorings, symmetry-forbidden in the far field. These complexes are versatile synthetic models for natural light-harvesting systems.

[1]  Dongho Kim,et al.  A 1,3-phenylene-bridged hexameric porphyrin wheel and efficient excitation energy transfer along the wheel. , 2013, Chemistry.

[2]  N. V. van Hulst,et al.  Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes , 2013, Science.

[3]  L. Perdigão,et al.  Two Vernier-templated routes to a 24-porphyrin nanoring. , 2012, Angewandte Chemie.

[4]  M. Wasielewski,et al.  Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. , 2011, Journal of the American Chemical Society.

[5]  B. Albinsson,et al.  Temperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer–Fullerene Donor–Acceptor Systems , 2011, Journal of the American Chemical Society.

[6]  T. Moore,et al.  Mimicking the role of the antenna in photosynthetic photoprotection. , 2011, Journal of the American Chemical Society.

[7]  M. Malfois,et al.  Vernier templating and synthesis of a 12-porphyrin nano-ring , 2011, Nature.

[8]  G. Scholes Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? , 2010 .

[9]  Dongho Kim,et al.  Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. , 2009, Accounts of chemical research.

[10]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[11]  Hee‐eun Song,et al.  Excited-state energy flow in phenylene-linked multiporphyrin arrays. , 2009, The journal of physical chemistry. B.

[12]  L. Herz,et al.  Dynamics of excited-state conformational relaxation and electronic delocalization in conjugated porphyrin oligomers. , 2008, Journal of the American Chemical Society.

[13]  T. Aida,et al.  "Conformational" solvatochromism: spatial discrimination of nonpolar solvents by using a supramolecular box of a pi-conjugated zinc bisporphyrin rotamer. , 2008, Angewandte Chemie.

[14]  B. Albinsson,et al.  Enhanced pi conjugation around a porphyrin[6] nanoring. , 2008, Angewandte Chemie.

[15]  G. Frey,et al.  Dimensionality-dependent energy transfer in polymer-intercalated SnS2 nanocomposites , 2007 .

[16]  T. Aida,et al.  Chiroptical sensing of asymmetric hydrocarbons using a homochiral supramolecular box from a bismetalloporphyrin rotamer. , 2007, Angewandte Chemie.

[17]  Jürgen Köhler,et al.  The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes , 2006, Quarterly Reviews of Biophysics.

[18]  T. Aida,et al.  Planar or perpendicular? Conformational preferences of pi-conjugated metalloporphyrin dimers and trimers in supramolecular tubular arrays. , 2005, Angewandte Chemie.

[19]  R. Friend,et al.  Exciton migration in a polythiophene: probing the spatial and energy domain by line-dipole Forster-type energy transfer. , 2005, The Journal of chemical physics.

[20]  Tonu Pullerits,et al.  Excitonic coupling in polythiophenes: comparison of different calculation methods. , 2004, The Journal of chemical physics.

[21]  N. Isaacs,et al.  The purple bacterial photosynthetic unit , 1996, Photosynthesis Research.

[22]  Dewey Holten,et al.  Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. , 2002, Accounts of chemical research.

[23]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations. , 2001, Biophysical journal.

[24]  A. V. van Oijen,et al.  Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate. , 2001, Biophysical journal.

[25]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[26]  V. Sundström,et al.  B800-->B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. , 2000, Biophysical journal.

[27]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[28]  H. Sumi,et al.  Theory of Rapid Excitation-Energy Transfer from B800 to Optically-Forbidden Exciton States of B850 in the Antenna System LH2 of Photosynthetic Purple Bacteria , 1999 .

[29]  H. Anderson,et al.  A conjugated triple strand porphyrin array , 1999 .

[30]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[31]  G. Fleming,et al.  Electronic Excitation Transfer in the LH2 Complex of Rhodobacter sphaeroides , 1996 .

[32]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[33]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[34]  V. Sundström,et al.  Energy transfer dynamics of isolated B800–850 and B800–820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila , 1988 .