Time-Recursive Velocity-Adapted Spatio-Temporal Scale-Space Filters

This paper presents a theory for constructing and computing velocity-adapted scale-space filters for spatio-temporal image data. Starting from basic criteria in terms of time-causality, time-recursivity, locality and adaptivity with respect to motion estimates, a family of spatio-temporal recursive filters is proposed and analysed. An important property of the proposed family of smoothing kernels is that the spatio-temporal covariance matrices of the discrete kernels obey similar transformation properties under Galilean transformations as for continuous smoothing kernels on continuous domains. Moreover, the proposed theory provides an efficient way to compute and generate nonseparable scale-space representations without need for explicit external warping mechanisms or keeping extended temporal buffers of the past. The approach can thus be seen as a natural extension of recursive scale-space filters from pure temporal data to spatio-temporal domains.

[1]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[2]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[3]  T. Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure , 1997 .

[4]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[5]  Tony Lindeberg,et al.  Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection , 2000, IEEE Trans. Image Process..

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[8]  T. Lindeberg Scale-space with Causal Time Direction , 1996 .

[9]  Manuel González,et al.  Affine Invariant Texture Segmentation and Shape from Texture by Variational Methods , 1998, Journal of Mathematical Imaging and Vision.

[10]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[11]  Russell L. De Valois,et al.  PII: S0042-6989(00)00210-8 , 2000 .

[12]  Thomas S. Huang,et al.  Image processing , 1971 .

[13]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[14]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[15]  Pravin M. Vaidya,et al.  A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..

[16]  Tony Lindeberg,et al.  Scale-Space with Casual Time Direction , 1996, ECCV.

[17]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[18]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  P. J. Burt,et al.  Fast Filter Transforms for Image Processing , 1981 .

[20]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[21]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[22]  Luc Florack,et al.  Scale-Time Kernels and Models , 2001, Scale-Space.

[23]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[24]  Frédéric Guichard,et al.  A morphological, affine, and Galilean invariant scale-space for movies , 1998, IEEE Trans. Image Process..

[25]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[26]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Tony Lindeberg,et al.  Linear Spatio-Temporal Scale-Space , 1997, Scale-Space.

[28]  J. J. Koenderink,et al.  Scale-time , 1988, Biological Cybernetics.

[29]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[30]  J. Crowley A representation for visual information with application to machine vision , 1982 .

[31]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[32]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[33]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[34]  Hans-Hellmut Nagel,et al.  Spatiotemporally Adaptive Estimation and Segmenation of OF-Fields , 1998, ECCV.

[35]  J. Crowley A representation for visual information , 1981 .

[36]  T. Lindeberg,et al.  Velocity-adapted spatio-temporal receptive fields for direct recognition of activities , 2002 .