Highly interactive computational steering for coupled 3 D flow problems utilizing multiple GPUs Towards intuitive desktop environments for interactive 3 D fluid structure interaction

Most computational fluid dynamics (CFD) simulations require massive computational power which is usually provided by traditional High Performance Computing (HPC) environments. Although interactivity of the simulation process is highly appreciated by scientists and engineers, due to limitations of typical HPC environments, present CFD simulations are usually executed non interactively. A recent trend is to harness the parallel computational power of graphics processing units (GPUs) for general purpose applications. As an alternative to traditional massively parallel computing, GPU computing has also gained popularity in the CFD community, especially for its application to the lattice Boltzmann method (LBM). For instance, Tölke and others presented very efficient implementations of the LBM for 2D as well as 3D space (Toelke J, in Comput Visual Sci. (2008); Toelke J and Krafczk M, in Int J Comput Fluid Dyn 22(7): 443–456 (2008)). In this work we motivate the use of GPU computing to facilitate interactive CFD simulations. In our approach, the simulation is executed on multiple GPUs instead of traditional HPC environments, which allows the integration of the complete simulation process into a single desktop application. To demonstrate the feasibility of our approach, we show a fully bidirectional fluid-structure-interaction for self induced membrane oscillations in a turbulent flow. The efficiency of the approach allows a 3D simulation close to realtime.

[1]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[2]  Jarke J. van Wijk,et al.  3D computational steering with parametrized geometric objects , 1995, Proceedings Visualization '95.

[3]  Arie E. Kaufman,et al.  GPU Cluster for High Performance Computing , 2004, Proceedings of the ACM/IEEE SC2004 Conference.

[4]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[5]  Joseph J. LaViola,et al.  Immersive VR for Scientific Visualization: A Progress Report , 2000, IEEE Computer Graphics and Applications.

[6]  Hans Petter Langtangen,et al.  Modern Software Tools for Scientific Computing , 1997, Birkhäuser Boston.

[7]  Manfred Krafczyk,et al.  Free surface flow simulations on GPGPUs using the LBM , 2011, Comput. Math. Appl..

[8]  Sabine Rathmayer,et al.  Internet-based Collaborative Simulation in Computational Prototyping and Scientific Research , 2000, PDPTA.

[9]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[10]  Manfred Krafczyk,et al.  TeraFLOP computing on a desktop PC with GPUs for 3D CFD , 2008 .

[11]  James Arthur Kohl,et al.  Cumulvs: Providing Fault Toler. Ance, Visualization, and Steer Ing of Parallel Applications , 1996, Int. J. High Perform. Comput. Appl..

[12]  James Arthur Kohl,et al.  Cumulvs: Interacting with High-Performance Scientific Simulations, for Visualization, Steering and Fault Tolerance , 2006, Int. J. High Perform. Comput. Appl..

[13]  Helen Wright,et al.  Computational Steering by Direct Image Manipulation , 2001, VMV.

[14]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[15]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[16]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[17]  Ken Brodlie,et al.  gViz – Visualization and Steering for the Grid , 2003 .

[18]  William E. Lorensen,et al.  The design and implementation of an object-oriented toolkit for 3D graphics and visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[19]  Charles D. Hansen,et al.  Interactive Simulation and Visualization , 1999, Computer.

[20]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[21]  U. Frisch,et al.  Lattice gas models for 3D hydrodynamics , 1986 .

[22]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[23]  Olivier Coulaud,et al.  A Steering Environment for Online Parallel Visualization of Legacy Parallel Simulations , 2006, 2006 Tenth IEEE International Symposium on Distributed Simulation and Real-Time Applications.

[24]  D. Norman The psychology of everyday things , 1990 .

[25]  Robert E. Marshall,et al.  Visualization methods and simulation steering for a 3D turbulence model of Lake Erie , 1990, I3D '90.

[26]  Massimiliano Fatica Accelerating linpack with CUDA on heterogenous clusters , 2009, GPGPU-2.

[27]  D. d'Humières,et al.  Thirteen-velocity three-dimensional lattice Boltzmann model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Manfred Krafczyk,et al.  Applying Modern Soft- and Hardware Technologies for Computational Steering Approaches in Computational Fluid Dynamics , 2007, CW 2007.

[29]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[30]  Andries van Dam Beyond WIMP , 2000, IEEE Computer Graphics and Applications.

[31]  S. Hou,et al.  Lattice Boltzmann Method for Incompressible, Viscous Flow , 1995 .

[32]  Manfred Krafczyk,et al.  LARGE-EDDY SIMULATIONS WITH A MULTIPLE-RELAXATION-TIME LBE MODEL , 2003 .

[33]  Gerhard Wellein,et al.  On the single processor performance of simple lattice Boltzmann kernels , 2006 .

[34]  Jonas Tölke,et al.  Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA , 2009, Comput. Vis. Sci..

[35]  Jarke J. van Wijk,et al.  Bringing Computational Steering to the User , 1997, Scientific Visualization Conference (dagstuhl '97).

[36]  S M Pickles,et al.  A practical toolkit for computational steering , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Jarke J. van Wijk,et al.  Computational steering , 1997, Future Gener. Comput. Syst..

[38]  Kw Brodlie,et al.  Computational steering in visualization dataflow environments , 2007 .

[39]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Helen Wright,et al.  Steering and visualization: Enabling technologies for computational science , 2010, Future Gener. Comput. Syst..

[41]  Bertrand Meyer,et al.  Object-Oriented Software Construction, 2nd Edition , 1997 .

[42]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[43]  Robert van Liere,et al.  A multimodal virtual reality interface for 3 D interaction with VTK , 2007 .

[44]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  B. H. McCormick,et al.  Visualization in scientific computing , 1995 .

[46]  Thomas Eickermann,et al.  VISIT - a Visualization Interface Toolkit, Version 1.0 , 2000 .

[47]  簡聰富,et al.  物件導向軟體之架構(Object-Oriented Software Construction)探討 , 1989 .

[48]  Christopher R. Johnson,et al.  The SCIRun Computational Steering Software System , 1997, SciTools.

[49]  Jarke J. van Wijk,et al.  A survey of computational steering environments , 1999, Future Gener. Comput. Syst..

[50]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[51]  Ken Brodlie,et al.  Distributed and Collaborative Visualization , 2004, Comput. Graph. Forum.

[52]  C.R. Johnson,et al.  SCIRun: A Scientific Programming Environment for Computational Steering , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[53]  Penny Rheingans,et al.  NIH-NSF visualization research challenges report summary , 2006, IEEE Computer Graphics and Applications.

[54]  John Swarbrooke,et al.  Case Study 18 – Las Vegas, Nevada, USA , 2007 .

[55]  Daniel C. Robbins,et al.  Three-dimensional widgets , 1992, I3D '92.

[56]  Pieter G. Buning,et al.  Analysis and visualization of complex unsteady three-dimensional flows , 1989 .

[57]  Mike Potel,et al.  MVP: Model-View-Presenter The Taligent Programming Model for C++ and Java , 1996 .

[58]  Peter M. A. Sloot,et al.  Dynamic Exploration Environments , 2002 .

[59]  Al Globus A software model for visualization of large unsteady 3-D CFD results , 1995 .

[60]  Steve Bryson,et al.  Virtual reality in scientific visualization , 1993, CACM.

[61]  Petra Wenisch,et al.  Computational Steering of CFD Simulations on Teraflop-Supercomputers , 2008 .

[62]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[63]  Ernst Rank,et al.  Harnessing High-Performance Computers for Computational Steering , 2005, PVM/MPI.