Range-separated local hybrids.

We present two range-separated (screened and long-range-corrected) extensions to our recent work on local hybrids of generalized gradient approximation exchange. Our screened local hybrid improves over HSE06 for thermochemistry and barrier heights. The long-range-corrected (LC) local hybrid improves over LC-omegaPBE for heats of formation and nonhydrogen transfer reaction barriers but does not reach the accuracy of LC-omegaPBE for hydrogen transfer barrier heights.

[1]  G. Scuseria,et al.  Tests of functionals for systems with fractional electron number. , 2007, The Journal of chemical physics.

[2]  E. Baerends,et al.  Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals. , 2005, The Journal of chemical physics.

[3]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[4]  K. Burke,et al.  Unambiguous exchange-correlation energy density , 1998 .

[5]  D. Cremer Density functional theory: coverage of dynamic and non-dynamic electron correlation effects , 2001 .

[6]  Axel D. Becke,et al.  Density functionals from the extended G2 test set: Second-order gradient corrections , 1998 .

[7]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[8]  F. E. Jorge,et al.  Accurate universal Gaussian basis set for all atoms of the Periodic Table , 1998 .

[9]  M. Kaupp,et al.  A thermochemically competitive local hybrid functional without gradient corrections. , 2007, The Journal of chemical physics.

[10]  Donald G. Truhlar,et al.  Small Representative Benchmarks for Thermochemical Calculations , 2003 .

[11]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[12]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[13]  Donald G Truhlar,et al.  Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. , 2005, The journal of physical chemistry. A.

[14]  Weitao Yang Generalized adiabatic connection in density functional theory , 1998 .

[15]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[16]  R. Baer,et al.  A well-tempered density functional theory of electrons in molecules. , 2007, Physical chemistry chemical physics : PCCP.

[17]  Muneaki Kamiya,et al.  Influence of the long-range exchange effect on dynamic polarizability , 2005 .

[18]  Benjamin G. Janesko,et al.  Local hybrid functionals based on density matrix products. , 2007, The Journal of chemical physics.

[19]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[20]  Benjamin G. Janesko,et al.  Local hybrids as a perturbation to global hybrid functionals. , 2009, The Journal of chemical physics.

[21]  John P. Perdew,et al.  Exact differential equation for the density and ionization energy of a many-particle system , 1984 .

[22]  D. Truhlar,et al.  Erratum: Small representative benchmarks for thermochemical calculations (J. Phys. Chem. A (2003) 107A, (8997)) , 2004 .

[23]  Gustavo E. Scuseria,et al.  Local hybrid functionals , 2003 .

[24]  G. Scuseria,et al.  Exact-exchange energy density in the gauge of a semilocal density functional approximation , 2007, 0710.3354.

[25]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[26]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[27]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[28]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[29]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[30]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[31]  Benjamin G. Janesko,et al.  Parameterized local hybrid functionals from density-matrix similarity metrics. , 2008, The Journal of chemical physics.

[32]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[33]  C. Almbladh,et al.  Density-functional exchange-correlation potentials and orbital eigenvalues for light atoms , 1984 .

[34]  E. Baerends,et al.  Exchange and correlation energy in density functional theory. Comparison of accurate DFT quantities with traditional Hartree-Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2. , 1997 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  Andreas Savin,et al.  Hybrid functionals with local range separation. , 2008, The Journal of chemical physics.

[37]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[38]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[39]  Local hybrid functionals with an explicit dependence on spin polarization. , 2009, The journal of physical chemistry. A.

[40]  G. Scuseria,et al.  The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. , 2007, The Journal of chemical physics.

[41]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[42]  M. Kaupp,et al.  Local hybrid exchange-correlation functionals based on the dimensionless density gradient , 2007 .

[43]  John P. Perdew,et al.  Generalized gradient approximation to the angle- and system-averaged exchange hole , 1998 .

[44]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[45]  D. Truhlar,et al.  Multi-coefficient Gaussian-3 method for calculating potential energy surfaces , 1999 .

[46]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[47]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[48]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[49]  M. Kaupp,et al.  What can we learn from the adiabatic connection formalism about local hybrid functionals? , 2008, The Journal of chemical physics.

[50]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[51]  Benjamin G. Janesko,et al.  Self-consistent generalized Kohn-Sham local hybrid functionals of screened exchange: Combining local and range-separated hybridization. , 2008, The Journal of chemical physics.

[52]  D. Truhlar,et al.  Erratum: Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods (Journal of Physical Chemistry A (2005) 109A (2015-2016)) , 2006 .

[53]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[54]  Joseph L. Durant,et al.  Evaluation of transition state properties by density functional theory , 1996 .

[55]  Jianmin Tao,et al.  Erratum: “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes” [J. Chem. Phys. 119, 12129 (2003)] , 2004 .

[56]  Kimihiko Hirao,et al.  Modified regional self-interaction correction method based on the pseudospectral method. , 2010, The journal of physical chemistry. A.

[57]  M. Kaupp,et al.  Local hybrid functionals: an assessment for thermochemical kinetics. , 2007, The Journal of chemical physics.

[58]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[59]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[60]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[61]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[62]  A. Becke A real-space model of nondynamical correlation , 2003 .

[63]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[64]  Axel D. Becke,et al.  Simulation of delocalized exchange by local density functionals , 2000 .

[65]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[66]  G. Scuseria,et al.  Progress in the development of exchange-correlation functionals , 2005 .

[67]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[68]  Benjamin G. Janesko,et al.  Locally range‐separated hybrids as linear combinations of range‐separated local hybrids , 2009 .

[69]  G. Scuseria,et al.  Assessment of a Middle-Range Hybrid Functional. , 2008, Journal of chemical theory and computation.

[70]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[71]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[72]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[73]  Jianmin Tao,et al.  Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction , 2008, 0808.2523.

[74]  A. Becke Real-space post-Hartree-Fock correlation models. , 2005, The Journal of chemical physics.

[75]  Kieron Burke,et al.  The adiabatic connection method: a non-empirical hybrid , 1997 .

[76]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[77]  Donald G. Truhlar,et al.  Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics , 2004 .

[78]  M. Kaupp,et al.  From local hybrid functionals to "localized local hybrid" potentials: formalism and thermochemical tests. , 2006, The Journal of chemical physics.

[79]  Nicholas A Besley,et al.  Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. , 2009, Physical chemistry chemical physics : PCCP.

[80]  M. Kaupp,et al.  Nuclear shielding constants from localized local hybrid exchange-correlation potentials , 2007 .

[81]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[82]  L. Curtiss,et al.  Gaussian-3X (G3X) theory : use of improved geometries, zero-point energies, and Hartree-Fock basis sets. , 2001 .

[83]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[84]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[85]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[86]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[87]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[88]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[89]  Benjamin G. Janesko,et al.  Generalized gradient approximation model exchange holes for range-separated hybrids. , 2008, The Journal of chemical physics.