Fast Two-scale Methods for Eikonal Equations

Fast Marching and Fast Sweeping are the two most commonly used methods for solving the eikonal equation. Each of these methods performs best on a different set of problems. Fast Sweeping, for example, will outperform Fast Marching on problems where the characteristics are largely straight lines. Fast Marching, on the other hand, is usually more efficient than Fast Sweeping on problems where characteristics frequently change their directions and on domains with complicated geometry. In this paper we explore the possibility of combining the best features of both approaches by using Marching on a coarser scale and sweeping on a finer scale. We present three new hybrid methods based on this idea and illustrate their properties in several numerical examples with continuous and piecewise-constant speed functions in $R^2$.

[1]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[2]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[3]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[4]  Ian M. Mitchell,et al.  Fast Marching Methods for Stationary Hamilton-Jacobi Equations with Axis-Aligned Anisotropy , 2008, SIAM J. Numer. Anal..

[5]  R. González,et al.  On Deterministic Control Problems: An Approximation Procedure for the Optimal Cost I. The Stationary Problem , 1985 .

[6]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[7]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[9]  D. Bertsekas,et al.  Parallel asynchronous label-correcting methods for shortest paths , 1996 .

[10]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[11]  Guillermo Sapiro,et al.  O(N) implementation of the fast marching algorithm , 2006, Journal of Computational Physics.

[12]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Hybrid Control , 2002, HSCC.

[14]  Adam M. Oberman,et al.  Homogenization of Metric Hamilton-Jacobi Equations , 2009, Multiscale Model. Simul..

[15]  Seongjai Kim,et al.  An O(N) Level Set Method for Eikonal Equations , 2000, SIAM J. Sci. Comput..

[16]  C. Rasch,et al.  Remarks on the implementation of the fast marching method , 2009 .

[17]  Maurizio Falcone,et al.  A Characteristics Driven Fast Marching Method for the Eikonal Equation , 2008 .

[18]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[19]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[20]  U. Pape,et al.  Implementation and efficiency of Moore-algorithms for the shortest route problem , 1974, Math. Program..

[21]  Stanley Bak,et al.  Some Improvements for the Fast Sweeping Method , 2010, SIAM J. Sci. Comput..

[22]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[23]  Christian Rasch,et al.  Remarks on the O(N) Implementation of the Fast Marching Method , 2007, ArXiv.

[24]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[25]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[26]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[27]  Christopher M. Kuster,et al.  Computational Study of Fast Methods for the Eikonal Equation , 2005, SIAM J. Sci. Comput..

[28]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[29]  Hongkai Zhao,et al.  A New Approximation for Effective Hamiltonians for Homogenization of a class of Hamilton-Jacobi Equations , 2011, Multiscale Model. Simul..

[30]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[31]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[32]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[33]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[34]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[35]  Alexander Vladimirsky,et al.  Label-Setting Methods for Multimode Stochastic Shortest Path Problems on Graphs , 2007, Math. Oper. Res..

[36]  Alexander M. Bronstein,et al.  Parallel algorithms for approximation of distance maps on parametric surfaces , 2008, TOGS.

[37]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[38]  J. Sethian,et al.  Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Stefan Turek,et al.  THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS , 2005 .

[40]  Maurizio Falcone The minimum time problem and its applications to front propagation , 1994 .

[41]  P. Danielsson Euclidean distance mapping , 1980 .

[42]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[43]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[44]  Chi-Wang Shu,et al.  Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations , 2011, SIAM J. Sci. Comput..

[45]  John N. Tsitsiklis,et al.  Implementation of efficient algorithms for globally optimal trajectories , 1998, IEEE Trans. Autom. Control..

[46]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .