The mass of an asymptotically flat manifold

We show that the mass of an asymptotically flat n-manifold is a geometric invariant. The proof is based on harmonic coordinates and, to develop a suitable existence theory, results about elliptic operators with rough coefficients on weighted Sobolev spaces are summarised. Some relations between the mass, scalar curvature and harmonic maps are described and the positive mass theorem for n-dimensional spin manifolds is proved.

[1]  V. S. Vladimirov The Cauchy Problem , 1986 .

[2]  R. Lockhart,et al.  Elliptic differential operators on noncompact manifolds , 1985 .

[3]  R. Bartnik Existence of maximal surfaces in asymptotically flat spacetimes , 1984 .

[4]  R. Bartnik The Existence of Maximal Surfaces in Asymptotically Flat Spacetimes , 1984 .

[5]  A. Ashtekar On the boundary conditions for gravitational and gauge fields at spatial infinity , 1984 .

[6]  V. I. Denisov,et al.  The energy determined in general relativity on the basis of the traditional Hamiltonian approach does not have physical meaning , 1983 .

[7]  C. Taubes Stability in Yang-Mills theories , 1983 .

[8]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[9]  Thomas H. Parker,et al.  On Witten's proof of the positive energy theorem , 1982 .

[10]  M. Cantor Elliptic operators and the decomposition of tensor fields , 1981 .

[11]  E. Witten A new proof of the positive energy theorem , 1981 .

[12]  Y. Choquet-bruhat,et al.  Elliptic systems inHs,δ spaces on manifolds which are euclidean at infinity , 1981 .

[13]  R. Lockhart Fredholm Properties of a Class of Elliptic Operators on Non-Compact Manifolds , 1981 .

[14]  S. Yau,et al.  Proof of the positive mass theorem. II , 1981 .

[15]  David Gilbarg,et al.  Intermediate Schauder estimates , 1980 .

[16]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[17]  J. York Energy and Momentum of the Gravitational Field , 1980 .

[18]  R. McOwen The behavior of the laplacian on weighted sobolev spaces , 1979 .

[19]  J. Eells,et al.  A Report on Harmonic Maps , 1978 .

[20]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[21]  J. Marsden,et al.  Solution of the local mass problem in general relativity , 1976 .

[22]  T. Regge,et al.  Role of surface integrals in the Hamiltonian formulation of general relativity , 1974 .

[23]  H. Walker,et al.  The null spaces of elliptic partial differential operators in Rn , 1973 .

[24]  R. Geroch Multipole Moments. I. Flat Space , 1970 .

[25]  R. Geroch Multipole Moments. II. Curved Space , 1970 .

[26]  M. Atiyah,et al.  Seminar on the Atiyah-Singer Index Theorem. , 1968 .

[27]  Tosio Kato Perturbation theory for linear operators , 1966 .

[28]  R. Arnowitt,et al.  Coordinate invariance and energy expressions in general relativity , 1961 .

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.