An object-based image analysis approach for comparing tree detection from satellite imagery at different scales; A case study in Sukumba Mali

[1]  Thomas J. Fuchs,et al.  A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes , 2016 .

[2]  Giles M. Foody,et al.  Improving super-resolution mapping through combining multiple super-resolution land-cover maps , 2016 .

[3]  Pushmeet Kohli,et al.  Associative Hierarchical Random Fields , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[5]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[6]  Dirk Eddelbuettel,et al.  Seamless R and C++ Integration with Rcpp , 2013 .

[7]  Teerasit Kasetkasem,et al.  A super-resolution mapping algorithm based on the level set method , 2013, 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[8]  Peijun Li,et al.  A super-resolution mapping method using local indicator variograms , 2012 .

[9]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Alfred Stein,et al.  Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Alfred Stein,et al.  Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images , 2011 .

[12]  P. Gong,et al.  Accuracy Assessment Measures for Object-based Image Segmentation Goodness , 2010 .

[13]  Alexandros Karatzoglou,et al.  Kernel-based machine learning for fast text mining in R , 2010, Comput. Stat. Data Anal..

[14]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[15]  Valentyn Tolpekin,et al.  Super-resolution mapping for extraction of urban tree crown objects from VHR satellite images , 2010 .

[16]  Peter M. Atkinson,et al.  Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study , 2009 .

[17]  Alfred Stein,et al.  Quantification of the Effects of Land-Cover-Class Spectral Separability on the Accuracy of Markov-Random-Field-Based Superresolution Mapping , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Monika Sester,et al.  Advances in GIScience , 2009 .

[19]  Frank Y. Shih,et al.  Image Segmentation , 2007, Encyclopedia of Biometrics.

[20]  J. Vayssières,et al.  Inventory of the fruit fly species (Diptera: Tephritidae) linked to the mango tree in Mali and tests of integrated control , 2007 .

[21]  Christian Heipke,et al.  Automatic extraction and delineation of single trees from remote sensing data , 2007, Machine Vision and Applications.

[22]  Geoffrey J. Hay,et al.  Object-based Image Analysis : Strengths , Weaknesses , Opportunities and Threats ( Swot ) , 2006 .

[23]  G. Hay,et al.  An automated object-based approach for the multiscale image segmentation of forest scenes , 2005 .

[24]  P. Atkinson Sub-pixel Target Mapping from Soft-classified, Remotely Sensed Imagery , 2005 .

[25]  Pramod K. Varshney,et al.  Super-resolution land cover mapping using a Markov random field based approach , 2005 .

[26]  Jianping Fan,et al.  Seeded region growing: an extensive and comparative study , 2005, Pattern Recognit. Lett..

[27]  Peter M. Atkinson,et al.  Resolution Manipulation and Sub-Pixel Mapping , 2004 .

[28]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[29]  Alfred Stein,et al.  Existential uncertainty of spatial objects segmented from satellite sensor imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  P. Atkinson,et al.  Uncertainty in remote sensing and GIS , 2002 .

[31]  Guaraci J. Erthal,et al.  Satellite Imagery Segmentation: a region growing approach , 1996 .

[32]  F. Maselli,et al.  Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications , 1994 .

[33]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[34]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[35]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  Alan H. Strahler,et al.  The Use of Prior Probabilities in Maximum Likelihood Classification , 1980 .