Identification of four type II toxin‐antitoxin systems in Actinobacillus pleuropneumoniae

Abstract Toxin‐antitoxin (TA) systems are small genetic elements that are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in various bacteria and proposed to play an important role in bacterial physiology and virulence. However, their presence in the genomes of Actinobacillus species has received no attention. In this study, we describe the identification of four type II TA systems in Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Reverse transcription PCR analysis revealed that the genes encoding the toxin and antitoxin are co‐transcribed. Overexpression of each toxin inhibited the growth of Escherichia coli, and the toxic effect could be counteracted by its cognate antitoxin. The pull‐down experiments demonstrated that each toxin interacts with its cognate antitoxin in vivo. The promoter activity assays showed that each antitoxin could autoregulate either positively or negatively the TA operon transcription. In addition, the APJL_0660/0659 TA system is present in half of the detected serovars of A. pleuropneumoniae, while the others are present in all. Collectively, we identified four type II TA systems in A. pleuropneumoniae, and this study has laid the foundation for further functional study of these TA systems.

[1]  P. Langford,et al.  A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay , 2017, Journal of Clinical Microbiology.

[2]  Kiyoung Lee,et al.  Structure, Biology, and Therapeutic Application of Toxin–Antitoxin Systems in Pathogenic Bacteria , 2016, Toxins.

[3]  D. Tollervey,et al.  VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation , 2016, Nucleic Acids Research.

[4]  W. Chan,et al.  The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence , 2016, Front. Microbiol..

[5]  Zixin Deng,et al.  Identification and characterization of chromosomal relBE toxin-antitoxin locus in Streptomyces cattleya DSM46488 , 2016, Scientific Reports.

[6]  F. García-del Portillo,et al.  Toxin-antitoxins and bacterial virulence. , 2016, FEMS microbiology reviews.

[7]  Xiaoxue Wang,et al.  Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli , 2016, Toxins.

[8]  T. Wood,et al.  Toxin-Antitoxin Systems in Clinical Pathogens , 2016, Toxins.

[9]  F. Hayes,et al.  Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis , 2016, Molecules.

[10]  Yusheng Tan,et al.  The VapBC1 toxin-antitoxin complex from Mycobacterium tuberculosis: purification, crystallization and X-ray diffraction analysis. , 2016, Acta crystallographica. Section F, Structural biology communications.

[11]  R. Bertram,et al.  Toxin-Antitoxin Systems of Staphylococcus aureus , 2016, Toxins.

[12]  W. Han,et al.  Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release , 2016, Scientific Reports.

[13]  Shuai Le,et al.  Identification and Characterization of the HicAB Toxin-Antitoxin System in the Opportunistic Pathogen Pseudomonas aeruginosa , 2016, Toxins.

[14]  R. Sarközi,et al.  Identification of a proposed new serovar of Actinobacillus Pleuropneumoniae: Serovar 16. , 2015, Acta veterinaria Hungarica.

[15]  Shaleen B. Korch,et al.  Erratum to: The Mycobacterium tuberculosis relBE toxin: antitoxin genes are stress-responsive modules that regulate growth through translation inhibition , 2015, Journal of Microbiology.

[16]  Shuai Le,et al.  The chromosomal SezAT toxin–antitoxin system promotes the maintenance of the SsPI‐1 pathogenicity island in epidemic Streptococcus suis , 2015, Molecular microbiology.

[17]  Huanchun Chen,et al.  Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis , 2015, Scientific Reports.

[18]  Kiyoung Lee,et al.  Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides , 2015, Nucleic acids research.

[19]  Xiaoxue Wang,et al.  Identification and characterization of a HEPN-MNT family type II toxin–antitoxin in Shewanella oneidensis , 2015, Microbial biotechnology.

[20]  P. Langford,et al.  The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. , 2015, Veterinary microbiology.

[21]  F. Yuan,et al.  Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. , 2015, Veterinary microbiology.

[22]  N. Iqbal,et al.  Comprehensive Functional Analysis of the 18 Vibrio cholerae N16961 Toxin-Antitoxin Systems Substantiates Their Role in Stabilizing the Superintegron , 2015, Journal of bacteriology.

[23]  A. Garcia-Pino,et al.  Crystallization of two operator complexes from the Vibrio cholerae HigBA2 toxin-antitoxin module. , 2015, Acta crystallographica. Section F, Structural biology communications.

[24]  E. Sadowy,et al.  Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon , 2014, Front. Microbiol..

[25]  H. van Tilbeurgh,et al.  Functional and Structural Analysis of HicA3-HicB3, a Novel Toxin-Antitoxin System of Yersinia pestis , 2014, Journal of bacteriology.

[26]  L. Morganti,et al.  VapC from the Leptospiral VapBC Toxin-Antitoxin Module Displays Ribonuclease Activity on the Initiator tRNA , 2014, PloS one.

[27]  P. Genevaux,et al.  Multiple Toxin-Antitoxin Systems in Mycobacterium tuberculosis , 2014, Toxins.

[28]  D. Raoult,et al.  A Toxin-Antitoxin Module of Salmonella Promotes Virulence in Mice , 2013, PLoS pathogens.

[29]  D. Ning,et al.  Transcriptional and Proteolytic Regulation of the Toxin-Antitoxin Locus vapBC10 (ssr2962/slr1767) on the Chromosome of Synechocystis sp. PCC 6803 , 2013, PloS one.

[30]  M. Laub,et al.  A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. , 2013, Molecular cell.

[31]  A. Garcia-Pino,et al.  Crystallization of the HigBA2 toxin-antitoxin complex from Vibrio cholerae. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[32]  G. Dubin,et al.  A regulatory role for Staphylococcus aureus toxin–antitoxin system PemIKSa , 2013, Nature Communications.

[33]  M. Kiupel,et al.  The RNA Chaperone Hfq Promotes Fitness of Actinobacillus pleuropneumoniae during Porcine Pleuropneumonia , 2013, Infection and Immunity.

[34]  Yan Jiang,et al.  Characterization of a Chromosomal Type II Toxin–Antitoxin System mazEaFa in the Cyanobacterium Anabaena sp. PCC 7120 , 2013, PloS one.

[35]  M. Mulvey,et al.  Toxin-Antitoxin Systems Are Important for Niche-Specific Colonization and Stress Resistance of Uropathogenic Escherichia coli , 2012, PLoS pathogens.

[36]  Torsten Herrmann,et al.  A Novel Type V TA System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS , 2012, Nature chemical biology.

[37]  A. Heck,et al.  The toxin–antitoxin proteins relBE2Spn of Streptococcus pneumoniae: Characterization and association to their DNA target , 2012, Proteins.

[38]  M. Inouye,et al.  YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli , 2012, Molecular microbiology.

[39]  M. Inouye,et al.  Toxin-antitoxin systems in bacteria and archaea. , 2011, Annual review of genetics.

[40]  Robert M. DiFazio,et al.  Toxin-antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. , 2011, FEMS microbiology letters.

[41]  J. Harikrishna,et al.  Genetic Regulation of the yefM-yoeB Toxin-Antitoxin Locus of Streptococcus pneumoniae , 2011, Journal of bacteriology.

[42]  Zixin Deng,et al.  TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea , 2010, Nucleic Acids Res..

[43]  J. Suh,et al.  Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis. , 2010, Biochemical and biophysical research communications.

[44]  F. Haesebrouck,et al.  Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host , 2010, Veterinary research.

[45]  A. Cheung,et al.  Proteolytic Regulation of Toxin-Antitoxin Systems by ClpPC in Staphylococcus aureus , 2009, Journal of bacteriology.

[46]  J. Cox,et al.  Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution , 2009, PLoS genetics.

[47]  M. Inouye,et al.  Staphylococcus aureus YoeB Homologues Inhibit Translation Initiation , 2009, Journal of bacteriology.

[48]  M. Inouye,et al.  The Inhibitory Mechanism of Protein Synthesis by YoeB, an Escherichia coli Toxin* , 2009, Journal of Biological Chemistry.

[49]  P. Blum,et al.  Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus. , 2009, Biochemical Society transactions.

[50]  A. Cheung,et al.  Regulation of the mazEF Toxin-Antitoxin Module in Staphylococcus aureus and Its Impact on sigB Expression , 2009, Journal of bacteriology.

[51]  D. Eisenberg,et al.  Structure and Proposed Activity of a Member of the VapBC Family of Toxin-Antitoxin Systems , 2009, Journal of Biological Chemistry.

[52]  Shaleen B. Korch,et al.  Three Mycobacterium tuberculosis Rel Toxin-Antitoxin Modules Inhibit Mycobacterial Growth and Are Expressed in Infected Human Macrophages , 2008, Journal of bacteriology.

[53]  Frédérique Barloy-Hubler,et al.  RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes , 2007, Genome Biology.

[54]  Anton Meinhart,et al.  Molecular and Structural Characterization of the PezAT Chromosomal Toxin-Antitoxin System of the Human Pathogen Streptococcus pneumoniae* , 2007, Journal of Biological Chemistry.

[55]  M. Waldor,et al.  Characterization of a higBA Toxin-Antitoxin Locus in Vibrio cholerae , 2006, Journal of bacteriology.

[56]  K. Gerdes,et al.  The chromosomal relBE2 toxin–antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin–antitoxin interaction , 2006, Molecular microbiology.

[57]  S. Ren,et al.  Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome , 2004, Cell Research.

[58]  F. Haesebrouck,et al.  Comparative virulence of NAD-dependent and NAD-independent Actinobacillus pleuropneumoniae strains. , 1992, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B.

[59]  S. Molin,et al.  Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Nakamura,et al.  Identification of a VapBC toxin–antitoxin system in a thermophilic bacterium Thermus thermophilus HB27 , 2016, Extremophiles.

[61]  Shaleen B. Korch,et al.  The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition , 2015, Journal of Microbiology.

[62]  真希 前田,et al.  Anabaena sp. PCC 7120の栄養細胞とヘテロシストのチオレドキシン還元標的蛋白質 , 2009 .