Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification

This study presents the first attempt of direct continuous-time model identification using instrumental variable method for Hammerstein–Wiener systems from sampled data. Under the assumption of monotonic function for the Wiener part, the whole non-linear model is first estimated as an augmented multiple-input single-output linear model, from which the model parameters are then extracted by singular value decomposition. A refined instrumental variable method is proposed to consistently identify this non-linear system acting in a coloured noisy environment. Monte Carlo simulation analysis is presented to illustrate the effectiveness of the proposed method.

[1]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[2]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[3]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[4]  P. Young,et al.  An optimal IV technique for identifying continuous-time transfer function model of multiple input systems , 2007 .

[5]  Lennart Ljung,et al.  IDENTIFICATION OF WIENER SYSTEM WITH MONOTONOUS NONLINEARITY , 2006 .

[6]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[7]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[8]  Tongwen Chen,et al.  A blind approach to identification of Hammerstein-Wiener systems corrupted by nonlinear-process noise , 2009, 2009 7th Asian Control Conference.

[9]  David T. Westwick,et al.  Identification of IIR Wiener systems with spline nonlinearities that have variable knots , 2005, IEEE Transactions on Automatic Control.

[10]  David M. Himmelblau,et al.  Resolving problems in closed loop nonlinear process identification using IRN , 1996 .

[11]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[12]  A. H. Falkner Iterative technique in the identification of a non-linear system , 1988 .

[13]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[14]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[15]  E. Baeyens,et al.  SUBSPACE IDENTIFICATION OF MULTIVARIABLE HAMMERSTEIN AND WIENER MODELS , 2002 .

[16]  Derrick K. Rollins,et al.  Continuous-time Hammerstein and Wiener modeling under second-order static nonlinearity for periodic process signals , 2006, Comput. Chem. Eng..

[17]  Fouad Giri,et al.  Parameter identification of a class of Hammerstein plants , 2001, Autom..

[18]  Somanath Majhi,et al.  Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains. , 2010, ISA transactions.

[19]  Hugues Garnier,et al.  Refined instrumental variable methods for identification of LPV Box-Jenkins models , 2010, Autom..

[20]  Lennart Ljung,et al.  Maximum likelihood identification of Wiener models , 2008, Autom..

[21]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[22]  Kristiaan Pelckmans,et al.  A simple recursive algorithm for learning a Monotone Wiener system , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  Lennart Ljung,et al.  Revisiting Hammerstein system identification through the Two-Stage Algorithm for bilinear parameter estimation , 2009, Autom..

[24]  Peter C. Young,et al.  Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  P. Young,et al.  Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models , 2008 .

[26]  J. Voros AN ITERATIVE METHOD FOR HAMMERSTEIN-WIENER SYSTEMS PARAMETER IDENTIFICATION , 2004 .

[27]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[28]  Dennis S. Bernstein,et al.  Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities , 2003 .

[29]  S. Hwang,et al.  Iterative Identification of Continuous-Time Hammerstein and Wiener Systems Using a Two-Stage Estimation Algorithm , 2009 .