Mechanical properties of sodium and potassium activated metakaolin-based geopolymers

In this study, a set of mechanical properties of geopolymers, synthesized by alkali (NaOH or KOH) activation of metakaolin and SiO2 mixture, were characterized at ambient temperature. Samples with K/Al or Na/Al atomic ratios equal to 1, Si/Al atomic ratios in the 1.25–2.5 range and H2O/Al2O3 molar ratios of 11 or 13 are cured at 80 °C for 24 and 48 h before characterization, to determine effect of Si/Al ratio and curing time on the structure and mechanical properties of geopolymers. The structure of synthesized geopolymers characterized using XRD, NMR, SEM, and density measurements was correlated to their mechanical properties, including compressive strength, Young’s modulus, hardness, and fracture toughness. The results of this study suggest a strong effect of Si/Al ratios (in the 1.5–2 range), density, and microstructure on the maximum strength, Young’s modulus, and hardness of geopolymers. There were also notable differences in strength between samples cured for 24 and 48 h, suggesting that the degree of geopolymerization reaction also plays important role in mechanical properties of this new class of inorganic polymers.

[1]  Waltraud M. Kriven,et al.  Use of Geopolymeric Cements as a Refractory Adhesive for Metal and Ceramic Joins , 2008 .

[2]  Grant C. Lukey,et al.  The thermal evolution of metakaolin geopolymers: Part 2 – Phase stability and structural development , 2007 .

[3]  Kostas Komnitsas,et al.  Geopolymerisation of low calcium ferronickel slags , 2007 .

[4]  M. Alkan,et al.  Solubility of chlorine in aqueous hydrochloric acid solutions. , 2005, Journal of hazardous materials.

[5]  J. Davidovits Geopolymer chemistry and applications , 2008 .

[6]  Sindhunata A conceptual model of geopolymerisation , 2006 .

[7]  Zuhua Zhang,et al.  Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry , 2009 .

[8]  John L. Provis,et al.  Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers , 2009 .

[9]  M. Gordillo,et al.  Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK , 2009 .

[10]  Sudong Hua,et al.  Activating process of geopolymer source material: Kaolinite , 2009 .

[11]  Kwesi Sagoe-Crentsil,et al.  Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures , 2008 .

[12]  J. V. Deventer,et al.  Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates , 2003 .

[13]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[14]  J.S.J. van Deventer,et al.  Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers , 1999 .

[15]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems , 2007 .

[16]  R. H. Atkinson Recent advances in the applied chemistry of the rare metals. Jubilee memorial lecture , 1940 .

[17]  K. Sagoe-Crentsil,et al.  Relationships between composition, structure and strength of inorganic polymers , 2005 .

[18]  R. T. Pascoe,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements , 1981 .

[19]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[20]  H. Stanjek,et al.  Basics of X-ray Diffraction , 2004 .

[21]  B. Lawn Indentation of Ceramics with Spheres: A Century after Hertz , 1998 .

[22]  P. Duxson The structure and thermal evolution of metakaolin geopolymers , 2006 .

[23]  R. Cloots,et al.  Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag , 2003 .

[24]  K. Niihara New design concept of structural ceramics―ceramic nanocomposites , 1991 .

[25]  James Lankford,et al.  Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method , 1982 .

[26]  E. Vance,et al.  Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization , 2007 .

[27]  Hongxi Wang,et al.  Bonding and abrasion resistance of geopolymeric repair material made with steel slag , 2008 .

[28]  M. Glinicki,et al.  Depth-sensing indentation method for evaluation of efficiency of secondary cementitious materials , 2004 .

[29]  V. Farmer The Infrared spectra of minerals , 1974 .

[30]  Henri Van Damme,et al.  Geopolymers from Algerian metakaolin. Influence of secondary minerals , 2009 .

[31]  A. V. Riessen,et al.  Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature , 2009 .

[32]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[33]  Rubina Chaudhary,et al.  Mechanism of geopolymerization and factors influencing its development: a review , 2007 .

[34]  Ángel Palomo,et al.  Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete , 2007 .

[35]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[36]  J. Deventer,et al.  The effects of inorganic salt contamination on the strength and durability of geopolymers , 2002 .

[37]  Hua Xu,et al.  Effect of Source Materials on Geopolymerization , 2003 .

[38]  J. Faimon Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering , 1996 .

[39]  Zhang Yunsheng,et al.  Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.

[40]  Neil E. Jacobsen,et al.  NMR spectroscopy explained , 2007 .

[41]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder , 2009, Journal of Materials Science.

[42]  Wenzhong Zhu,et al.  Nanoindentation Study of Na-Geopolymers Exposed to High Temperatures , 2009 .

[43]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[44]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[45]  Waltraud M. Kriven,et al.  Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites , 2012 .

[46]  Priyan Mendis,et al.  Bond performance of reinforcing bars in inorganic polymer concrete (IPC) , 2007 .

[47]  B. Jong,et al.  Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions—IV. Aluminum coordination in glasses and aqueous solutions and comments on the aluminum avoidance principle , 1983 .

[48]  Glykeria Kakali,et al.  Dissolution of aluminosilicate minerals and by-products in alkaline media , 2007 .

[49]  Kostas Komnitsas,et al.  Geopolymerisation: A review and prospects for the minerals industry , 2007 .

[50]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[51]  C. Leonelli,et al.  Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition , 2010 .

[52]  Martyn Jones,et al.  The Production of Low Energy Cements , 2019, Lea's Chemistry of Cement and Concrete.

[53]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[54]  Brian H. O'Connor,et al.  Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite , 2003 .

[55]  K. Ciuffi,et al.  Spherical hybrid silica particles modified by methacrylate groups , 2007 .

[56]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[57]  F. P. Glasser,et al.  Chemically-bonded cementitious materials based on metakaolin , 1992 .

[58]  G. Brown,et al.  Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions—I. Electronic structure of H6Si2O7, H6AlSiO71−, and H6Al2O72− , 1980 .

[59]  J. Deventer,et al.  Chemical characterisation of the steel–geopolymeric gel interface , 2007 .

[60]  J. Davidovits,et al.  MAS-NMR studies of geopolymers heat-treated for applications in biomaterials field , 2007 .

[61]  Sudong Hua,et al.  Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer , 2009 .

[62]  John L. Provis,et al.  The role of particle technology in developing sustainable construction materials , 2010 .

[63]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[64]  Walter Loewenstein,et al.  The distribution of aluminum in the tetrahedra of silicates and aluminates , 1954 .

[65]  E. M. Tamayo,et al.  Estudio y optimización de los parámetros de reacción para la obtención de material geopolimérico , 2004 .

[66]  R. Cioffi,et al.  Coal fly ash as raw material for the manufacture of geopolymer-based products. , 2008, Waste management.

[67]  Haihong Li,et al.  Synthesis and mechanical properties of metakaolinite-based geopolymer , 2005 .

[68]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .

[69]  D. Perera,et al.  Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1 , 2008 .

[70]  J. Deventer,et al.  Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry , 2007 .

[71]  Jonathan L. Bell,et al.  X-Ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer) , 2008 .

[72]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[73]  Waltraud M. Kriven,et al.  Formation of Ceramics from Metakaolin‐Based Geopolymers. Part II: K‐Based Geopolymer , 2009 .

[74]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[75]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .

[76]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[77]  K. Sagoe-Crentsil,et al.  The effect of Al2O3 and SiO2 on setting and hardening of Na2O-Al2O3 -SiO2-H2O geopolymer systems , 2008 .

[78]  K. Sagoe-Crentsil,et al.  Effects of aluminates on the formation of geopolymers , 2005 .

[79]  J. Provis Modelling the formation of geopolymers , 2006 .

[80]  G. C. Lukey,et al.  A COMPARATIVE STUDY OF KAOLINITE VERSUS METAKAOLINITE IN FLY ASH BASED GEOPOLYMERS CONTAINING IMMOBILIZED METALS , 2004 .

[81]  John L. Provis,et al.  The mechanism of geopolymer gel formation investigated through seeded nucleation , 2008 .

[82]  J. I. Escalante-García,et al.  Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements , 2010 .