Hyper-miniaturization of monodisperse alginate–TiO2 composite particles with densely packed TiO2 nanoparticles

[1]  T. Torii,et al.  Hyper-Miniaturisation of Monodisperse Janus Hydrogel Beads with Magnetic Anisotropy Based on Coagulation of Fe3O4 Nanoparticles , 2013 .

[2]  T. Torii,et al.  Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[3]  K. B. Yoon,et al.  Synthesis of monodisperse mesoporous TiO2 spheres with tunable sizes between 0.6 and 3.1 μm and effects of reaction temperature, Ti source purity, and type of alkylamine on size and monodispersity. , 2012, Chemical communications.

[4]  Jing Zhang,et al.  One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets , 2012, Science.

[5]  R. Caruso,et al.  Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates , 2012 .

[6]  Stephanie J Bryant,et al.  Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[7]  Cai‐Feng Wang,et al.  Versatile Bifunctional Magnetic‐Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display , 2011, Advanced materials.

[8]  M. Bousmina,et al.  Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures , 2011 .

[9]  M. Jobbágy,et al.  Improving bacteria viability in metal oxide hostsvia an alginate-based hybrid approach , 2011 .

[10]  M. Yamada,et al.  PRODUCTION OF EXTREMELY-SMALL HYDROGEL MICROSPHERES BY UTILIZING WATER-DROPLET DISSOLUTION IN A POLAR SOLVENT , 2011 .

[11]  T. Torii,et al.  FABRICATION OF TITANIA MICROSPHERES USING ALGINATE MICRODROPLETS ON AN OIL/HYDROGEL INTERFACE , 2011 .

[12]  Jianhong Xu,et al.  One-step synthesis of chitosan-silica hybrid microspheres in a microfluidic device , 2010, Biomedical microdevices.

[13]  V. Cabuil,et al.  Highly porous and monodisperse magnetic silica beads prepared by a green templating method , 2010 .

[14]  Dae Kun Hwang,et al.  Multifunctional superparamagnetic Janus particles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  Sosaku Ichikawa,et al.  Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. , 2010, Lab on a chip.

[16]  W. Liu,et al.  Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. , 2009, Lab on a chip.

[17]  V. Luca,et al.  Mesoporous zirconium titanium oxides. Part 3. Synthesis and adsorption properties of unfunctionalized and phosphonate-functionalized hierarchical polyacrylonitrile-F-127-templated beads. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[18]  W. Wen,et al.  Design and fabrication of monodisperse hollow titania microspheres from a microfluidic droplet-template. , 2009, Chemical communications.

[19]  K. Du,et al.  Controlled Fabrication of Porous Titania Beads by a Sol−Gel Templating Method , 2009 .

[20]  Seung‐Man Yang,et al.  Single-Step Fabrication of Monodisperse TiO2 Hollow Spheres with Embedded Nanoparticles in Microfluidic Devices , 2009 .

[21]  F. Quignard,et al.  Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  R. Guzzon,et al.  Immobilization of yeast and bacteria cells in alginate microbeads coated with silica membranes: procedures, physico-chemical features and bioactivity , 2008 .

[23]  C. Ha,et al.  Microfluidic Synthesis of Reversibly Swelling Porous Polymeric Microcapsules with Controlled Morphology , 2008 .

[24]  F. Quignard,et al.  Photoluminescent porous alginate hybrid materials containing lanthanide ions. , 2008, Biomacromolecules.

[25]  F. Quignard,et al.  Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts , 2008 .

[26]  Ling Zhang,et al.  Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3: Preparation and Potential Application in Drug Delivery , 2008 .

[27]  A. Aserin Wiley Series on Surface and Interfacial chemistry , 2007 .

[28]  David A. Weitz,et al.  Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device , 2007 .

[29]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[30]  Toru Torii,et al.  Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape‐Controlled Polymer Microparticles , 2007 .

[31]  J. Yeh,et al.  Synthesis and properties of chitosan/SiO2 hybrid materials , 2007 .

[32]  Jianfeng Chen,et al.  Transport of ions through the oil phase of W(1)/O/W(2) double emulsions. , 2007, Journal of colloid and interface science.

[33]  Howard A Stone,et al.  Mechanism for clogging of microchannels. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Ali Khademhosseini,et al.  A controlled-release strategy for the generation of cross-linked hydrogel microstructures. , 2006, Journal of the American Chemical Society.

[35]  Jerome P Ferrance,et al.  Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. , 2006, Analytical chemistry.

[36]  D. Weitz,et al.  Electric control of droplets in microfluidic devices. , 2006, Angewandte Chemie.

[37]  R. Reis,et al.  Functional nanostructured chitosan–siloxane hybrids , 2005 .

[38]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[39]  Toshiro Higuchi,et al.  Novel microreactors for functional polymer beads , 2004 .

[40]  J. Devoisselle,et al.  Porous chitosan-silica hybrid microspheres as a potential catalyst , 2004 .

[41]  Minoru Seki,et al.  Prediction of Droplet Diameter for Microchannel Emulsification , 2002 .

[42]  Toshiro Higuchi,et al.  Droplet formation in a microchannel network. , 2002, Lab on a chip.

[43]  K. Papadopoulos,et al.  Effects of Osmotic Pressure on Water Transport in W(1)/O/W(2) Emulsions. , 2001, Journal of colloid and interface science.

[44]  B. Hills,et al.  NMR studies of calcium induced alginate gelation. Part II. The internal bead structure , 2000 .

[45]  B. Hills,et al.  NMR studies of calcium‐induced alginate gelation. Part I—MRI tests of gelation models , 2000 .

[46]  Ivar Storrø,et al.  Alginate as immobilization material: III. Diffusional properties , 1992, Biotechnology and bioengineering.