Developing luminescent silver nanodots for biological applications.

Though creation and characterization of water soluble luminescent silver nanodots were achieved only in the past decade, a large variety of emitters in diverse scaffolds have been reported. Photophysical properties approach those of semiconductor quantum dots, but relatively small sizes are retained. Because of these properties, silver nanodots are finding ever-expanding roles as probes and biolabels. In this critical review we revisit the studies on silver nanodots in inert environments and in aqueous solutions. The recent advances detailing their chemical and physical properties of silver nanodots are highlighted with an effort to decipher the relations between their chemical/photophysical properties and their structures. The primary results about their biological applications are discussed here as well, especially relating to their chemical and photophysical behaviours in biological environments (216 references).

[1]  Robert M. Dickson,et al.  Mechanism of Agn nanocluster photoproduction from silver oxide films , 2002 .

[2]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[3]  A. Ono,et al.  Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. , 2008, Chemical communications.

[4]  E. Gwinn,et al.  Sequence‐Dependent Fluorescence of DNA‐Hosted Silver Nanoclusters , 2008 .

[5]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[6]  L. Kevan,et al.  Paramagnetic silver clusters in Ag-NaA zeolite: electron spin resonance and diffuse reflectance spectroscopic studies , 1986 .

[7]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[8]  Tom Vosch,et al.  Oligonucleotide-stabilized Ag nanocluster fluorophores. , 2008, Journal of the American Chemical Society.

[9]  R. Dickson,et al.  In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. , 2007, Angewandte Chemie.

[10]  M. Roeffaers,et al.  In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Weiwei Guo,et al.  Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. , 2010, Journal of the American Chemical Society.

[12]  Elizabeth M. Nolan,et al.  Tools and tactics for the optical detection of mercuric ion. , 2008, Chemical reviews.

[13]  A. Henglein,et al.  Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions , 1993 .

[14]  Gion Calzaferri,et al.  Monolayers of zeolite A containing luminescent silver sulfide clusters. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[16]  Axel Scherer,et al.  Surface plasmon enhanced emission from dye doped polymer layers. , 2005, Optics express.

[17]  R. Dickson,et al.  Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. , 2008, Journal of the American Chemical Society.

[18]  Kai Johnsson,et al.  Chemical probes shed light on protein function. , 2007, Current opinion in structural biology.

[19]  G. Ertl,et al.  Light emission during the agglomeration of silver clusters in noble gas matrices , 1998 .

[20]  H. Frey,et al.  Water‐Soluble Fluorescent Ag Nanoclusters Obtained from Multiarm Star Poly(acrylic acid) as “Molecular Hydrogel” Templates , 2007 .

[21]  Long-chuan Yu,et al.  Microinjection as a tool of mechanical delivery. , 2008, Current opinion in biotechnology.

[22]  M. Roeffaers,et al.  Characterization of fluorescence in heat-treated silver-exchanged zeolites. , 2009, Journal of the American Chemical Society.

[23]  R S Eachus,et al.  The photophysics of silver halide imaging materials. , 2003, Annual review of physical chemistry.

[24]  J. Perry,et al.  Electron transfer-induced blinking in Ag nanodot fluorescence. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[26]  A. Henglein Non-metallic silver clusters in aqueous solution: stabilization and chemical reactions , 1989 .

[27]  T. Döppner,et al.  Excited-state relaxation of Ag8 clusters embedded in helium droplets. , 2004, Physical review letters.

[28]  Xiaogang Qu,et al.  Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. , 2010, Chemical communications.

[29]  K. Suslick,et al.  Water‐Soluble Fluorescent Silver Nanoclusters , 2010, Advanced materials.

[30]  R. Pal,et al.  Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. , 2009, Accounts of chemical research.

[31]  F. Martínez,et al.  Synthesis of Ag clusters in microemulsions : A time-resolved UV-vis and fluorescence spectroscopy study , 2007 .

[32]  R. Dickson,et al.  Tailoring silver nanodots for intracellular staining , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[33]  M. Moskovits,et al.  Ag5 is a planar trapezoidal molecule , 1998 .

[34]  Junhua Yu,et al.  Optically modulated fluorophores for selective fluorescence signal recovery. , 2009, Journal of the American Chemical Society.

[35]  Chih-Ching Huang,et al.  Gold nanoparticle probes for the detection of mercury, lead and copper ions. , 2011, The Analyst.

[36]  N. Makarava,et al.  Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. , 2005, Biophysical journal.

[37]  Tapas Kumar Maji,et al.  Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. , 2010, Angewandte Chemie.

[38]  Chih-Ching Huang,et al.  Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. , 2008, Chemical communications.

[39]  R. Dickson,et al.  Nanoparticle-free single molecule anti-stokes Raman spectroscopy. , 2005, Physical review letters.

[40]  Kevin G. Stamplecoskie,et al.  Kinetics of the formation of silver dimers: early stages in the formation of silver nanoparticles. , 2011, Journal of the American Chemical Society.

[41]  I. Willner,et al.  Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. , 2009, Angewandte Chemie.

[42]  A. Verkman,et al.  Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus , 1997, The Journal of cell biology.

[43]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale , 1993 .

[44]  Michael D. Bordo,et al.  Explorations in Monetary History: a Survey of the Literature , 1986 .

[45]  D. Kirilenko,et al.  Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters. , 2010, Optics express.

[46]  J. Lakowicz,et al.  Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. , 2005, Biochemical and biophysical research communications.

[47]  Tae-Hee Lee,et al.  Single-molecule optoelectronics. , 2005, Accounts of chemical research.

[48]  A. Prochiantz,et al.  The third helix of the Antennapedia homeodomain translocates through biological membranes. , 1994, The Journal of biological chemistry.

[49]  Lorenzo Berti,et al.  Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. , 2008, Nature nanotechnology.

[50]  Yu-Ting Su,et al.  Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. , 2010, Analytical chemistry.

[51]  R. J. Hoover,et al.  Letter: Studies of heavy metal binding with polynucleotides using optical detection of magnetic resonance. Silver(I) binding. , 1975, Journal of the American Chemical Society.

[52]  Gernot Guigas,et al.  The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved , 2007, FEBS letters.

[53]  J. Scaiano,et al.  Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. , 2009, Journal of the American Chemical Society.

[54]  Jason J. Han,et al.  A DNA--silver nanocluster probe that fluoresces upon hybridization. , 2010, Nano letters.

[55]  Ehud Y Isacoff,et al.  Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells , 2008, Proceedings of the National Academy of Sciences.

[56]  M. Cann,et al.  A europium complex that selectively stains nucleoli of cells. , 2006, Journal of the American Chemical Society.

[57]  R. Fischer,et al.  Break on through to the Other Side—Biophysics and Cell Biology Shed Light on Cell‐Penetrating Peptides , 2005, Chembiochem : a European journal of chemical biology.

[58]  Fedrigo,et al.  Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. , 1993, Physical review. B, Condensed matter.

[59]  Hideaki Mizuno,et al.  Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[60]  H. Jiang,et al.  Enhanced emission of silver nanoclusters through quantitative phase transfer. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  C. Merril,et al.  [17] Silver staining methods for polyacrylamide gel electrophoresis , 1983 .

[62]  E. Gwinn,et al.  The properties of small Ag clusters bound to DNA bases. , 2010, The Journal of chemical physics.

[63]  Robin H. A. Ras,et al.  Color tunability and electrochemiluminescence of silver nanoclusters. , 2009, Angewandte Chemie.

[64]  G. Ionova,et al.  Silver clusters: Optical absorption and ESR spectra; structure and calculation of electron transitions , 1996 .

[65]  Wolfgang Harbich,et al.  The optical absorption spectra of small Silver clusters (n=8–39) embedded in rare gas matrices , 1993 .

[66]  K. Suslick,et al.  Sonochemical synthesis of highly fluorescent ag nanoclusters. , 2010, ACS nano.

[67]  S L Jacques,et al.  Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence. , 1996, Applied optics.

[68]  Wilfried van Sark,et al.  Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy , 2001 .

[69]  R. M. Izatt,et al.  Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. , 1971, Chemical reviews.

[70]  J. Perry,et al.  Optically enhanced, near-IR, silver cluster emission altered by single base changes in the DNA template. , 2011, The journal of physical chemistry. B.

[71]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[72]  Juan C. Scaiano,et al.  Modern Molecular Photochemistry of Organic Molecules , 1978 .

[73]  C. Lofton,et al.  Mechanisms Controlling Crystal Habits of Gold and Silver Colloids , 2005 .

[74]  Bidisha Sengupta,et al.  DNA Templates for Fluorescent Silver Clusters and I-Motif Folding , 2009 .

[75]  R. Dickson,et al.  Synchronously amplified fluorescence image recovery (SAFIRe). , 2010, The journal of physical chemistry. B.

[76]  E. Yeung,et al.  High Throughput Single Molecule Spectral Imaging of Photoactivated Luminescent Silver Clusters on Silver Island Films , 2009 .

[77]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[78]  R. Baetzold,et al.  FORMATION AND SPECTROSCOPIC MANIFESTATION OF SILVER CLUSTERS ON SILVER BROMIDE SURFACES , 1998 .

[79]  G. Seifert,et al.  Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study , 2004 .

[80]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[81]  A. Henglein,et al.  Reduction of Ag+ on Polyacrylate Chains in Aqueous Solution , 1998 .

[82]  U. Kubitscheck,et al.  Photostability Data for Fluorescent Dyes: An Update. , 2002 .

[83]  W. Fann,et al.  Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. , 2009, Physical chemistry chemical physics : PCCP.

[84]  Chih-Ching Huang,et al.  Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. , 2010, Chemical communications.

[85]  Tom Vosch,et al.  Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores , 2007, Proceedings of the National Academy of Sciences.

[86]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[87]  Hideki Nabika,et al.  Enhanced Emission from Photoactivated Silver Clusters Coupled with Localized Surface Plasmon Resonance , 2009 .

[88]  P. C. Ford,et al.  Photochemical and photophysical properties of tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic configurations , 1993 .

[89]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[90]  D. Ly,et al.  High yield, large scale synthesis of thiolate-protected Ag7 clusters. , 2009, Journal of the American Chemical Society.

[91]  S. Bloom,et al.  Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining , 1975, Chromosoma.

[92]  A. Verkman,et al.  Actin Cytoskeleton as the Principal Determinant of Size-dependent DNA Mobility in Cytoplasm , 2005, Journal of Biological Chemistry.

[93]  J. Lakowicz,et al.  Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. , 2007, Nano letters.

[94]  T. Pradeep,et al.  Ag(9) quantum cluster through a solid-state route. , 2010, Journal of the American Chemical Society.

[95]  G. Calzaferri,et al.  The electronic structure of Cu+, Ag+, and Au+ zeolites. , 2003, Chemical Society reviews.

[96]  Daniel A. Clayton,et al.  Photoluminescence and spectroelectrochemistry of single ag nanowires. , 2010, ACS nano.

[97]  K. Seff,et al.  The octahedral hexasilver molecule. Seven crystal structures of variously vacuum-dehydrated fully silver(1+)-exchanged zeolite A , 1978 .

[98]  D. Evanoff,et al.  Synthesis and optical properties of silver nanoparticles and arrays. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[99]  T. Sun,et al.  Silver Clusters and Chemistry in Zeolites , 1994 .

[100]  Robin H. A. Ras,et al.  Controlled growth of silver nanoparticle arrays guided by a self-assembled polymer–peptide conjugate , 2010 .

[101]  Johan Hofkens,et al.  Optical Encoding of Silver Zeolite Microcarriers , 2010, Advanced materials.

[102]  Helmut Sigel,et al.  Interactions of metal ions with nucleotides and nucleic acids and their constituents , 1993 .

[103]  W. E. Moerner,et al.  Novel fluorophores for single-molecule imaging. , 2003 .

[104]  Robert M Dickson,et al.  Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. , 2002, Journal of the American Chemical Society.

[105]  G. Ertl,et al.  Fluorescence and excitation spectra of Ag4 in an argon matrix , 1999 .

[106]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[107]  W. Webb,et al.  Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm. , 1998, Applied optics.

[108]  Absorption and fluorescence spectra of Ar-matrix-isolated Ag3 clusters , 2000 .

[109]  G. Brewer Copper in medicine. , 2003, Current opinion in chemical biology.

[110]  E. Kiseleva,et al.  The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. , 2000, Journal of cell science.

[111]  S. Simon,et al.  Studying individual events in biology. , 2007, Annual review of biochemistry.

[112]  R. Dickson,et al.  Shuttle-based fluorogenic silver-cluster biolabels. , 2009, Angewandte Chemie.

[113]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[114]  M. Berciano,et al.  Cajal’s contribution to the knowledge of the neuronal cell nucleus , 2009, Chromosoma.

[115]  A. Henglein,et al.  Time-Resolved Investigation of Early Processes in the Reduction of Ag+ on Polyacrylate in Aqueous Solution , 1998 .

[116]  M. Mostafavi,et al.  Complexation of silver clusters of a few atoms by a polyanion in aqueous solution: pH effect correlated to structural changes , 1990 .

[117]  N. Coombs,et al.  Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[118]  X. Gong,et al.  Structures of [Ag7(SR)4]- and [Ag7(DMSA)4]-. , 2010, Journal of the American Chemical Society.

[119]  J. Uytterhoeven,et al.  The nature of the charged silver clusters in dehydrated zeolites of type A , 1981 .

[120]  Hongzheng Chen,et al.  Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. , 2009, Chemistry.

[121]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[122]  R. Martin,et al.  Nucleoside sites for transition metal ion binding , 1985 .

[123]  N. Fang,et al.  Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. , 2009, ACS nano.

[124]  P. Dugourd,et al.  Absorption enhancement and conformational control of peptides by small silver clusters. , 2008, Physical review letters.

[125]  E. Gwinn,et al.  Hairpins with Poly-C Loops Stabilize Four Types of Fluorescent Agn:DNA , 2009 .

[126]  H. Yeh,et al.  A complementary palette of fluorescent silver nanoclusters. , 2010, Chemical communications.

[127]  B. Lounis,et al.  Fluorescent silver oligomeric clusters and colloidal particles , 2005 .

[128]  Xiangyang Wu,et al.  Fluorescence blinking dynamics of silver nanoparticle and silver nanorod films , 2008, Nanotechnology.

[129]  T. Kistenmacher,et al.  An extension of the role of O(2) of cytosine residues in the binding of metal ions. Synthesis and structure of 1-methylcytosine. , 1977, Journal of the American Chemical Society.

[130]  K. Koszinowski,et al.  A highly charged Ag(6)(4+) core in a DNA-encapsulated silver nanocluster. , 2010, Chemistry.

[131]  A. Henglein,et al.  Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis , 1990 .

[132]  C. Ryu,et al.  Photophysical properties of hexanuclear copper(I) and silver(I) clusters , 1992 .

[133]  S. Dong,et al.  Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. , 2008, Chemical communications.

[134]  Eugenia Kumacheva,et al.  Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels , 2005 .

[135]  Shaojun Dong,et al.  Sensitive detection of cysteine based on fluorescent silver clusters. , 2009, Biosensors & bioelectronics.

[136]  G. Schatz,et al.  From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Agn(n= 10, 20, 35, 56, 84, 120) Tetrahedral Clusters , 2008 .

[137]  Zhan-guo Wang,et al.  Photostimulated luminescence of silver clusters in zeolite-Y , 1997 .

[138]  W. Sessa,et al.  Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo , 2003, Nature Medicine.

[139]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[140]  G. Ertl,et al.  Chemiluminescence in the Agglomeration of Metal Clusters , 1996, Science.

[141]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[142]  J. Zink,et al.  Luminescence from the chair and cube isomers of tetrakis[(triphenylphosphine)iodosilver] , 1991 .

[143]  A. Henglein Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition , 1993 .

[144]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[145]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[146]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[147]  Martin Richardson,et al.  Luminescence properties of silver zinc phosphate glasses following different irradiations , 2009 .

[148]  J. Buttet,et al.  Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices , 1993 .

[149]  Flora L Thorp-Greenwood,et al.  Application of d6 transition metal complexes in fluorescence cell imaging. , 2010, Chemical communications.

[150]  Yang Shi,et al.  Competitive fragmentation and electron loss kinetics of photoactivated silver cluster anions: Dissociation energies of Agn− (n=7–11) , 1999 .

[151]  R. Dickson,et al.  Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates † , 2008, Photochemistry and photobiology.

[152]  E. Whittle,et al.  Matrix Isolation Method for the Experimental Study of Unstable Species , 1954 .

[153]  Francesco Stellacci,et al.  Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. , 2008, Nature materials.

[154]  B. Nordén,et al.  Correlation between cellular localization and binding preference to RNA, DNA, and phospholipid membrane for luminescent ruthenium(II) complexes. , 2011, The journal of physical chemistry. B.

[155]  R. Hock,et al.  Structure and function of the nucleolus. , 1999, Current opinion in cell biology.

[156]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[157]  J. Rivoal,et al.  Deposition of mass selected silver clusters in rare gas matrices , 1990 .

[158]  E. D. Harris,et al.  Cellular copper transport and metabolism. , 2003, Annual review of nutrition.

[159]  J. Shirk,et al.  Matrix-isolation spectra of discharge ''sputtered'' metals. , 1968 .

[160]  Jie Xiao Single-Molecule Imaging in Live Cells , 2009 .

[161]  K. Y. Zhang,et al.  Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors , 2007 .

[162]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[163]  Shuhong Yu,et al.  Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier. , 2011, ACS nano.

[164]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[165]  Xingyu Jiang,et al.  Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. , 2008, Angewandte Chemie.

[166]  V. Catalano,et al.  A Highly Luminescent Tetranuclear Silver(I) Cluster and Its Ligation-Induced Core Rearrangement. , 1999, Angewandte Chemie.

[167]  P. Goodwin,et al.  Base-Directed Formation of Fluorescent Silver Clusters. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[168]  R. Dickson,et al.  Ag Nanocluster Formation Using a Cytosine Oligonucleotide Template. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[169]  G. Ozin,et al.  Cryophotoclustering techniques for synthesizing very small, naked silver clusters Agn of known size (where n = 2-5). The molecular metal cluster-bulk metal particle interface , 1978 .

[170]  E. Wang,et al.  Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. , 2009, Chemical communications.

[171]  Zhong Lin Wang,et al.  Luminescent and Raman active silver nanoparticles with polycrystalline structure. , 2008, Journal of the American Chemical Society.

[172]  Charles Kutal Spectroscopic and photochemical properties of d10 metal complexes , 1990 .

[173]  M. Howarth,et al.  Targeting quantum dots to surface proteins in living cells with biotin ligase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[175]  G. Calzaferri,et al.  Synthesis and luminescence properties of Ag2S and PbS clusters in zeolite A. , 2005, Chemistry.

[176]  M. Mostafavi,et al.  Ultra-slow aggregation process for silver clusters of a few atoms in solution , 1990 .

[177]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[178]  M. Roeffaers,et al.  Photoactivation of silver-exchanged zeolite A. , 2008, Angewandte Chemie.

[179]  Christopher E. Jones,et al.  Intracellular copper routing: the role of copper chaperones. , 2000, Trends in biochemical sciences.

[180]  Shimon Weiss,et al.  The power and prospects of fluorescence microscopies and spectroscopies. , 2003, Annual review of biophysics and biomolecular structure.

[181]  A. G. Wedd,et al.  Copper and Alzheimer's disease , 1996, Current opinion in chemical biology.

[182]  Lukas Novotny,et al.  Single carbon nanotube optical spectroscopy. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[183]  J. Veciana,et al.  Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. , 2005, Journal of the American Chemical Society.

[184]  A S Verkman,et al.  Size-dependent DNA Mobility in Cytoplasm and Nucleus* , 2000, The Journal of Biological Chemistry.

[185]  Michele L. Jacobson,et al.  Photo-dynamics on thin silver films , 2005 .

[186]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[187]  Yuqing Wu,et al.  A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells. , 2008, Chemical communications.

[188]  Shaojun Dong,et al.  Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II) , 2008 .

[189]  S. Pal,et al.  Structural and Functional Characterization of Luminescent Silver−Protein Nanobioconjugates , 2008 .

[190]  M. Osborne,et al.  Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[191]  C. Brown,et al.  The absorption spectrum of the Ag2 molecule , 1978 .

[192]  J. Rivas,et al.  Facile synthesis of stable subnanosized silver clusters in microemulsions. , 2007, Angewandte Chemie.

[193]  R. Dickson,et al.  All-optical fluorescence image recovery using modulated Stimulated Emission Depletion. , 2011, Chemical science.

[194]  Lili Wu,et al.  Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires , 2011 .

[195]  A. Banerjee,et al.  Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing , 2010 .

[196]  T. Pradeep,et al.  Luminescent Ag7 and Ag8 clusters by interfacial synthesis. , 2010, Angewandte Chemie.

[197]  R. Dickson,et al.  DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster. , 2010, The journal of physical chemistry letters.

[198]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[199]  J. Buttet,et al.  MEDIA EFFECTS ON THE OPTICAL ABSORPTION SPECTRA OF SILVER CLUSTERS EMBEDDED IN RARE GAS MATRICES , 1992 .

[200]  K. Kern,et al.  Controlled Deposition of Size-Selected Silver Nanoclusters , 1996, Science.

[201]  G. Sukhorukov,et al.  Photoinduced reduction of silver inside microscale polyelectrolyte capsules. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[202]  G. Ertl,et al.  Ag8 fluorescence in argon. , 2001, Physical review letters.

[203]  V. Kitaev,et al.  Silver Nanoclusters: Single-Stage Scaleable Synthesis of Monodisperse Species and Their Chirooptical Properties† , 2010 .

[204]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[205]  L. Brewer,et al.  Absorption Spectrum of Silver Atoms in Solid Argon, Krypton, and Xenon , 1968 .