Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s Disease

[1]  Ryan M. O’Connell,et al.  Adaptive immunity induces mutualism between commensal eukaryotes , 2021, Nature.

[2]  D. Underhill,et al.  Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice , 2021, Science.

[3]  A. Puel,et al.  Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies , 2021, Cell.

[4]  N. Solis,et al.  Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity , 2020, Frontiers in Immunology.

[5]  B. Malissen,et al.  Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption , 2020, Cell.

[6]  G. Victora,et al.  Tunable dynamics of B cell selection in gut germinal centers , 2020, Nature.

[7]  H. Wardemann,et al.  High microbiota reactivity of adult human intestinal IgA requires somatic mutations , 2020, The Journal of experimental medicine.

[8]  F. Alt,et al.  BCR selection and affinity maturation in Peyer’s patch germinal centres , 2020, Nature.

[9]  Y. Kawasawa,et al.  Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ , 2020, Science Immunology.

[10]  J. Clemente,et al.  Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. , 2020, Cell host & microbe.

[11]  G. Magri,et al.  Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA , 2020, Nature Reviews Immunology.

[12]  G. Butler,et al.  High-resolution mycobiota analysis reveals dynamic intestinal translocation prior to invasive candidiasis , 2019, Nature Medicine.

[13]  E. Slack,et al.  IgA and the intestinal microbiota: the importance of being specific , 2019, Mucosal Immunology.

[14]  Irina Leonardi,et al.  Profound mycobiome differences between segregated mouse colonies do not influence Th17 responses to a newly introduced gut fungal commensal. , 2019, Fungal genetics and biology : FG & B.

[15]  Irina Leonardi,et al.  Gut Mycobiota in Immunity and Inflammatory Disease. , 2019, Immunity.

[16]  B. Firek,et al.  Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants , 2019, Nature Medicine.

[17]  J. Lopez-Garcia The importance of being specific , 2019, European journal of pain.

[18]  A. Mitchell,et al.  Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. , 2019, Cell host & microbe.

[19]  S. Targan,et al.  Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. , 2019, Cell host & microbe.

[20]  Matthew Z. Anderson,et al.  Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism. , 2019, Cell host & microbe.

[21]  R. Alonso-Monge,et al.  Implementation of a CRISPR-Based System for Gene Regulation in Candida albicans , 2019, mSphere.

[22]  D. Artis,et al.  Response to Fungal Dysbiosis by Gut-Resident CX3CR1+ Mononuclear Phagocytes Aggravates Allergic Airway Disease. , 2018, Cell host & microbe.

[23]  Ghee Chuan Lai,et al.  Experimental evolution of a fungal pathogen into a gut symbiont , 2018, Science.

[24]  A. Bendelac,et al.  IgA Responses to Microbiota. , 2018, Immunity.

[25]  M. Schaller,et al.  Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers , 2018, mBio.

[26]  D. McGovern,et al.  CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi , 2018, Science.

[27]  D. Antonopoulos,et al.  Natural polyreactive IgA antibodies coat the intestinal microbiota , 2017, Science.

[28]  G. M. Chaves,et al.  An Update on Candida tropicalis Based on Basic and Clinical Approaches , 2017, Front. Microbiol..

[29]  U. Sauer,et al.  Antibodies Set Boundaries Limiting Microbial Metabolite Penetration and the Resultant Mammalian Host Response , 2018, Immunity.

[30]  Y. Koyama,et al.  Intestinal fungi contribute to development of alcoholic liver disease , 2017, The Journal of clinical investigation.

[31]  W. Agace,et al.  Diversity and functions of intestinal mononuclear phagocytes , 2017, Mucosal Immunology.

[32]  N. Ajami,et al.  IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation , 2017, Science Translational Medicine.

[33]  S. Vermeire,et al.  Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease , 2016, mBio.

[34]  L. Sollid,et al.  The human intestinal B-cell response , 2016, Mucosal Immunology.

[35]  G. Barton,et al.  Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life , 2016, Cell.

[36]  E. Cota,et al.  Candidalysin is a fungal peptide toxin critical for mucosal infection , 2016, Nature.

[37]  G. Liguori,et al.  Fungal Dysbiosis in Mucosa-associated Microbiota of Crohn's Disease Patients. , 2016, Journal of Crohn's & colitis.

[38]  Hugues Aschard,et al.  Fungal microbiota dysbiosis in IBD , 2016, Gut.

[39]  Markus S. Schröder,et al.  Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin , 2015, PLoS genetics.

[40]  Eric Z. Chen,et al.  Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. , 2015, Cell host & microbe.

[41]  L. Joosten,et al.  Immune defence against Candida fungal infections , 2015, Nature Reviews Immunology.

[42]  D. Antonopoulos,et al.  Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A. , 2015, Immunity.

[43]  G. Pesole,et al.  BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. , 2015, Immunity.

[44]  Xiaowei Zhan,et al.  Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization , 2015, Nature Medicine.

[45]  Ryan M. O’Connell,et al.  MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. , 2015, Cell host & microbe.

[46]  Jennifer P. Wang,et al.  Recognition of Aspergillus fumigatus Hyphae by Human Plasmacytoid Dendritic Cells Is Mediated by Dectin-2 and Results in Formation of Extracellular Traps , 2015, PLoS pathogens.

[47]  William W. Agace,et al.  Regional specialization within the intestinal immune system , 2014, Nature Reviews Immunology.

[48]  Judy H. Cho,et al.  Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease , 2014, Cell.

[49]  K. McCoy,et al.  Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. , 2014, Immunity.

[50]  J. Pla,et al.  The HOG Pathway Is Critical for the Colonization of the Mouse Gastrointestinal Tract by Candida albicans , 2014, PloS one.

[51]  S. Noble,et al.  Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism , 2013, Nature Genetics.

[52]  Steffen Jung,et al.  Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense , 2013, Immunology and cell biology.

[53]  Yaojun Tong,et al.  White-Opaque Switching in Natural MTLa/α Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex , 2013, PLoS biology.

[54]  Jessica V. Pierce,et al.  Normal Adaptation of Candida albicans to the Murine Gastrointestinal Tract Requires Efg1p-Dependent Regulation of Metabolic and Host Defense Genes , 2012, Eukaryotic Cell.

[55]  D. Diogo,et al.  A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness , 2012, PloS one.

[56]  Bernhard Hube,et al.  Importance of the Candida albicans cell wall during commensalism and infection. , 2012, Current opinion in microbiology.

[57]  Jessica V. Pierce,et al.  Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations , 2012, mBio.

[58]  M. Merad,et al.  Mononuclear phagocyte diversity in the intestine , 2012, Immunologic research.

[59]  A. Brand Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence , 2011, International journal of microbiology.

[60]  D. Moyes,et al.  Candida albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal Epithelial Cells , 2011, PloS one.

[61]  S. Hapfelmeier,et al.  Intestinal bacterial colonization induces mutualistic regulatory T cell responses. , 2011, Immunity.

[62]  S. Filler,et al.  Candida albicans Als3, a Multifunctional Adhesin and Invasin , 2010, Eukaryotic Cell.

[63]  M. Heikenwalder,et al.  Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses , 2010, Science.

[64]  N. Gow,et al.  Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages , 2010, Infection and Immunity.

[65]  W. Agace,et al.  Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions , 2009, The Journal of experimental medicine.

[66]  Thomas F. Tedder,et al.  Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism , 2009, Science.

[67]  Thierry Jouault,et al.  Candida albicans Colonization and ASCA in Familial Crohn's Disease , 2009, The American Journal of Gastroenterology.

[68]  M. Rescigno,et al.  The biology of intestinal immunoglobulin A responses. , 2008, Immunity.

[69]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[70]  K. McCoy,et al.  Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. , 2007, Seminars in immunology.

[71]  Keiichiro Suzuki,et al.  Regulation of B1 cell migration by signals through Toll-like receptors , 2006, The Journal of experimental medicine.

[72]  R. Balicer,et al.  Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease , 2005, Gut.

[73]  Yang-Nim Park,et al.  Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans , 2005, Eukaryotic Cell.

[74]  A. Mitchell,et al.  Yeast wall protein 1 of Candida albicans. , 2005, Microbiology.

[75]  D. Underhill,et al.  Dectin‐1 mediates macrophage recognition of Candida albicans yeast but not filaments , 2005, The EMBO journal.

[76]  S. Noble,et al.  Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans , 2005, Eukaryotic Cell.

[77]  Bernhard Hube,et al.  From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. , 2004, Current opinion in microbiology.

[78]  K. T. Holland,et al.  Production of the mycelial phase of Malassezia in vitro. , 2001, Medical mycology.

[79]  R. Zinkernagel,et al.  IgA production without μ or δ chain expression in developing B cells , 2001, Nature Immunology.

[80]  R. Zinkernagel,et al.  A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. , 2000, Science.

[81]  M. Shimoda,et al.  Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer's patches. , 1999, Immunology.

[82]  J. Staab,et al.  Genetic organization and sequence analysis of the hypha‐specific cell wall protein gene HWP1 of Candida albicans , 1998, Yeast.

[83]  G. Fink,et al.  Nonfilamentous C. albicans Mutants Are Avirulent , 1997, Cell.

[84]  D. Irwin,et al.  Isogenic strain construction and gene mapping in Candida albicans. , 1993, Genetics.

[85]  H. Kawanishi,et al.  Aging‐Associated Changes in Murine Intestinal Immunoglobulin A and M Secretions , 1988, Scandinavian journal of immunology.

[86]  R. Dubos,et al.  ASSOCIATION OF GERMFREE MICE WITH BACTERIA ISOLATED FROM NORMAL MICE , 1965, The Journal of experimental medicine.

[87]  S. Harris,et al.  Fungal morphogenesis. , 2014, Cold Spring Harbor perspectives in medicine.

[88]  K. McCoy,et al.  The immune geography of IgA induction and function , 2008, Mucosal Immunology.

[89]  R. Zinkernagel,et al.  IgA production without mu or delta chain expression in developing B cells. , 2001, Nature immunology.

[90]  C. Nombela,et al.  Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. , 1995, Gene.