General-purpose preconditioning for regularized interior point methods

In this paper we present general-purpose preconditioners for regularized augmented systems arising from optimization problems, and their corresponding normal equations. We discuss positive definite preconditioners, suitable for CG and MINRES. We consider “sparsifications” which avoid situations in which eigenvalues of the preconditioned matrix may become complex. Special attention is given to systems arising from the application of regularized interior point methods to linear or nonlinear convex programming problems.

[1]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[2]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[3]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[4]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[5]  Yvan Notay,et al.  A New Analysis of Block Preconditioners for Saddle Point Problems , 2014, SIAM J. Matrix Anal. Appl..

[6]  Nicholas I. M. Gould,et al.  Using constraint preconditioners with regularized saddle-point problems , 2007, Comput. Optim. Appl..

[7]  Martin Stoll,et al.  Interior-point methods and preconditioning for PDE-constrained optimization problems involving sparsity terms , 2020, Numer. Linear Algebra Appl..

[8]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[9]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[10]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[11]  Jacek Gondzio,et al.  Dynamic Non-diagonal Regularization in Interior Point Methods for Linear and Convex Quadratic Programming , 2019, J. Optim. Theory Appl..

[12]  István Maros,et al.  The role of the augmented system in interior point methods , 1998, Eur. J. Oper. Res..

[13]  H. Sue Dollar,et al.  Constraint-Style Preconditioners for Regularized Saddle Point Problems , 2007, SIAM J. Matrix Anal. Appl..

[14]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[15]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[16]  D. Sorensen,et al.  A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .

[17]  Jun Liu,et al.  Constraint preconditioning for nonsymmetric indefinite linear systems , 2010, Numer. Linear Algebra Appl..

[18]  M. Saunders,et al.  SOLVING REGULARIZED LINEAR PROGRAMS USING BARRIER METHODS AND KKT SYSTEMS , 1996 .

[19]  Jennifer A. Scott,et al.  A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows , 2018, Numerical Algorithms.

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Robert J. Vanderbei,et al.  Symmetric Quasidefinite Matrices , 1995, SIAM J. Optim..

[22]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[23]  Aurelio R. L. Oliveira,et al.  Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods , 2007, Comput. Optim. Appl..

[24]  Jacek Gondzio,et al.  Implementation of Interior Point Methods for Large Scale Linear Programming , 1996 .

[25]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..

[26]  Dominique Orban,et al.  Limited-memory LDL⊤ factorization of symmetric quasi-definite matrices with application to constrained optimization , 2015, Numerical Algorithms.

[27]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[28]  Jacek Gondzio,et al.  Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization , 2017, Numerische Mathematik.

[29]  J. Gondzio,et al.  An Interior Point-Proximal Method of Multipliers for Linear Positive Semi-Definite Programming , 2020, Journal of Optimization Theory and Applications.

[30]  Jennifer A. Scott,et al.  Solving Mixed Sparse-Dense Linear Least-Squares Problems by Preconditioned Iterative Methods , 2017, SIAM J. Sci. Comput..

[31]  Howard C. Elman,et al.  IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..

[32]  Jacek Gondzio,et al.  An interior point-proximal method of multipliers for convex quadratic programming , 2019, Computational Optimization and Applications.

[33]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[34]  Daniela di Serafino,et al.  DIPARTIMENTO DI MATEMATICA , 2008 .