Intra-auditory integration between pitch and loudness in humans: Evidence of super-optimal integration at moderate uncertainty in auditory signals

[1]  Tim Kiemel,et al.  Intra-Auditory Integration Improves Motor Performance and Synergy in an Accurate Multi-Finger Pressing Task , 2016, Front. Hum. Neurosci..

[2]  Yongseok Cho,et al.  The role of tactile sensation in online and offline hierarchical control of multi-finger force synergy , 2015, Experimental Brain Research.

[3]  Zhuanghua Shi,et al.  Reducing Bias in Auditory Duration Reproduction by Integrating the Reproduced Signal , 2013, PloS one.

[4]  Emilio Bizzi,et al.  The neural origin of muscle synergies , 2013, Front. Comput. Neurosci..

[5]  David Raposo,et al.  Multisensory Decision-Making in Rats and Humans , 2012, The Journal of Neuroscience.

[6]  N. J. Seo,et al.  Tactile feedback plays a critical role in maximum finger force production. , 2012, Journal of biomechanics.

[7]  Karl M Newell,et al.  Aging, visual information, and adaptation to task asymmetry in bimanual force coordination. , 2011, Journal of applied physiology.

[8]  Christopher R Fetsch,et al.  Neural correlates of reliability-based cue weighting during multisensory integration , 2011, Nature Neuroscience.

[9]  Max Berniker,et al.  Bayesian approaches to sensory integration for motor control. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[10]  Paul B Hibbard,et al.  Statistically optimal integration of biased sensory estimates. , 2011, Journal of vision.

[11]  Kyung Koh,et al.  Multi-finger pressing synergies change with the level of extra degrees of freedom , 2011, Experimental Brain Research.

[12]  Benjamin Balas,et al.  The Visual System as Statistician: Statistical Representation in Early Vision , 2010 .

[13]  Christopher R Fetsch,et al.  Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory , 2010, The European journal of neuroscience.

[14]  Knut Drewing,et al.  Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry , 2010, Experimental Brain Research.

[15]  Jennifer L. Campos,et al.  Bayesian integration of visual and vestibular signals for heading. , 2009, Journal of vision.

[16]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[17]  Rajiv Ranganathan,et al.  Motor synergies: feedback and error compensation within and between trials , 2008, Experimental Brain Research.

[18]  P. Haggard,et al.  Can vision of the body ameliorate impaired somatosensory function? , 2007, Neuropsychologia.

[19]  Gregor Schöner,et al.  Toward a new theory of motor synergies. , 2007, Motor control.

[20]  Edgar Erdfelder,et al.  G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences , 2007, Behavior research methods.

[21]  Tim Kiemel,et al.  Control and estimation of posture during quiet stance depends on multijoint coordination. , 2007, Journal of neurophysiology.

[22]  M. Ernst,et al.  Optimal integration of shape information from vision and touch , 2007, Experimental Brain Research.

[23]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[24]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[25]  George Mather,et al.  Foundations of Perception , 2006 .

[26]  Hermann L. F. Helmholtz,et al.  On the Sensations of Tone as a Physiological Basis for the Theory of Music , 2005 .

[27]  Jae Kun Shim,et al.  Prehension synergies in three dimensions. , 2005, Journal of neurophysiology.

[28]  James M. Hillis,et al.  Slant from texture and disparity cues: optimal cue combination. , 2004, Journal of vision.

[29]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[30]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[31]  M. Latash,et al.  Age-related changes in finger coordination in static prehension tasks. , 2004, Journal of applied physiology.

[32]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[33]  J. Saunders,et al.  Do humans optimally integrate stereo and texture information for judgments of surface slant? , 2003, Vision Research.

[34]  W. David Hairston,et al.  Multisensory enhancement of localization under conditions of induced myopia , 2003, Experimental Brain Research.

[35]  Robert A Jacobs,et al.  Bayesian integration of visual and auditory signals for spatial localization. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[37]  J. F. Soechting,et al.  Two virtual fingers in the control of the tripod grasp. , 2001, Journal of neurophysiology.

[38]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[39]  Gregor Schöner,et al.  The uncontrolled manifold concept: identifying control variables for a functional task , 1999, Experimental Brain Research.

[40]  J. Zwislocki,et al.  Relationships of intensity discrimination to sensation and loudness levels: dependence on sound frequency. , 1996, The Journal of the Acoustical Society of America.

[41]  B. Stein,et al.  Interactions among converging sensory inputs in the superior colliculus. , 1983, Science.

[42]  N. Draper,et al.  An Alternative Family of Transformations , 1980 .

[43]  A Vinegar,et al.  A technique for measuring frequency response of pressure, volume, and flow transducers. , 1979, Journal of applied physiology: respiratory, environmental and exercise physiology.

[44]  Michael A. Zagorski,et al.  Perceptual independence of pitch and loudness in a signal detection experiment: A processing model for 2ATFC (21FC) experiments , 1975 .

[45]  B. Moore Frequency difference limens for short-duration tones. , 1973, The Journal of the Acoustical Society of America.

[46]  D. W. Robinson,et al.  A re-determination of the equal-loudness relations for pure tones , 1956 .

[47]  Harvey Fletcher,et al.  Loudness, its definition, measurement and calculation , 1933 .

[48]  N. Bolognini,et al.  “Acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs , 2004, Experimental Brain Research.

[49]  M. Arbib Coordinated control programs for movements of the hand , 1985 .

[50]  I. Gartside Models of the Structural—Functional Organization of Certain Biological Systems , 1973 .

[51]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .