Retrieval of Gap Fraction and Effective Plant Area Index from Phase-Shift Terrestrial Laser Scans

The characterization of canopy structure is crucial for modeling eco-physiological processes. Two commonly used metrics for characterizing canopy structure are the gap fraction and the effective Plant Area Index (PAIe). Both have been successfully retrieved with terrestrial laser scanning. However, a systematic assessment of the influence of the laser scan properties on the retrieval of these metrics is still lacking. This study investigated the effects of resolution, measurement speed, and noise compression on the retrieval of gap fraction and PAIe from phase-shift FARO Photon 120 laser scans. We demonstrate that FARO’s noise compression yields gap fractions and PAIe that deviate significantly from those based on scans without noise compression and strongly overestimate Leaf Area Index (LAI) estimates based on litter trap measurements. Scan resolution and measurement speed were also shown to impact gap fraction and PAIe, but this depended on leaf development phase, stand structure, and LAI calculation method. Nevertheless, PAIe estimates based on various scan parameter combinations without noise compression proved to be quite stable.

[1]  Eric Price,et al.  LAI-2200C Plant Canopy Analyzer , 2014 .

[2]  Guang Zheng,et al.  Retrieval of Effective Leaf Area Index in Heterogeneous Forests With Terrestrial Laser Scanning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  M. Fournier,et al.  The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges , 2011, Annals of Forest Science.

[4]  Benjamin Koetz,et al.  Forest Canopy Gap Fraction From Terrestrial Laser Scanning , 2007, IEEE Geoscience and Remote Sensing Letters.

[5]  D. Seidel Terrestrial laser scanning- applications in forest ecological research , 2011 .

[6]  Richard A. Fournier,et al.  The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar , 2009 .

[7]  A. Bienert,et al.  APPLICATION OF TERRESTRIAL LASER SCANNERS FOR THE DETERMINATION OF FOREST INVENTORY PARAMETRS , 2006 .

[8]  K. Roberts,et al.  Thesis , 2002 .

[9]  P. Radtke,et al.  Ground-based Laser Imaging for Assessing Three-dimensional Forest Canopy Structure , 2006 .

[10]  N. J. Tate,et al.  Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data , 2009 .

[11]  Kenji Omasa,et al.  Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[13]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[14]  A. Antonarakis,et al.  Evaluating forest biometrics obtained from ground lidar in complex riparian forests , 2011 .

[15]  J. Eitel,et al.  Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner , 2010 .

[16]  Applying terrestrial LiDAR to derive gap fraction distribution time series during bud break. , 2011 .

[17]  Oliver Sonnentag,et al.  Leaf area index measurements at Fluxnet-Canada forest sites , 2006 .

[18]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[19]  T. A. Black,et al.  Characteristics of shortwave and longwave irradiances under a Douglas-fir forest stand , 1991 .

[20]  Thomas Udelhoven,et al.  The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans , 2013 .

[21]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[22]  Juha Hyyppä,et al.  BIOMASS ESTIMATION OF INDIVIDUAL TREES USING STEM AND CROWN DIAMETER TLS MEASUREMENTS , 2012 .

[23]  Guang Zheng,et al.  Retrieving Forest Inventory Variables with Terrestrial Laser Scanning (TLS) in Urban Heterogeneous Forest , 2011, Remote. Sens..

[24]  C. Woodcock,et al.  Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar , 2012 .

[25]  Alan H. Strahler,et al.  Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®) , 2013 .

[26]  Juha Hyyppä,et al.  Individual tree biomass estimation using terrestrial laser scanning , 2013 .

[27]  C. Woodcock,et al.  Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'. , 2008, Tree physiology.

[28]  Guang Zheng,et al.  Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors , 2009, Sensors.

[29]  Björn Van Genechten,et al.  Theory and practice on Terrestrial Laser Scanning: Training material based on practical applications , 2008 .

[30]  Jb Miller,et al.  A formula for average foliage density , 1967 .

[31]  Hans Pretzsch,et al.  Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest , 2010, Trees.

[32]  David L.B. Jupp,et al.  Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint , 2011 .

[33]  D. Baldocchi,et al.  On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR , 2014 .

[34]  H. Spiecker,et al.  AUTOMATIC DETERMINATION OF FOREST INVENTORY PARAMETERS USING TERRESTRIAL LASER SCANNING , 2003 .

[35]  P. Pueschel The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 terrestrial laser scans , 2013 .

[36]  J. Wilson,et al.  INCLINED POINT QUADRATS , 1960 .

[37]  Alan H. Strahler,et al.  Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar , 2011 .

[38]  C. Biernath,et al.  Evaluation of a ray-tracing canopy light model based on terrestrial laser scans , 2012 .

[39]  Lee A. Vierling,et al.  Use of a ground‐based scanning lidar for estimation of biophysical properties of western larch (Larix occidentalis) , 2007 .

[40]  F. M. Danson,et al.  Terrestrial laser scanners to measure forest canopy gap fraction , 2008 .

[41]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[42]  M. Weissa,et al.  Review of methods for in situ leaf area index ( LAI ) determination Part II . Estimation of LAI , errors and sampling , 2003 .

[43]  Kasper Johansen,et al.  Evaluation of terrestrial laser scanners for measuring vegetation structure , 2012 .

[44]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[45]  Pol Coppin,et al.  Assessment of Light Environment Variability in Broadleaved Forest Canopies Using Terrestrial Laser Scanning , 2010, Remote. Sens..

[46]  Heinrich Spiecker,et al.  Algorithms for the Automatic Detection of Trees in Laser Scanner Data , 2004 .

[47]  F. Mark Danson,et al.  Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction , 2013, Remote. Sens..

[48]  J. Monteith,et al.  The Radiation Regime and Architecture of Plant Stands. , 1983 .

[49]  J. Wilson,et al.  ANALYSIS OF THE SPATIAL DISTRIBUTION OF FOLIAGE BY TWO‐DIMENSIONAL POINT QUADRATS , 1959 .

[50]  G. Parker,et al.  Structure and microclimate of forest canopies. , 1995 .

[51]  N. Coops,et al.  Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand , 2010, Trees.

[52]  Guang Zheng,et al.  Spatial variability of terrestrial laser scanning based leaf area index , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[53]  Sylvain G. Leblanc,et al.  A practical scheme for correcting multiple scattering effects on optical LAI measurements , 2001 .