Materials selection for microfabricated electrostatic actuators

Microfabricated electrostatic actuators are employed in a wide variety of microelectromechanical systems (MEMS) for applications ranging from relays and switches to valves and displays. The rapid expansion of the set of materials available to MEMS designers motivates the need for a systematic and rational approach toward the selection of materials for electrostatic actuators. We apply the Ashby methodology to accomplish such a selection. The primary performance and reliability metrics considered are the actuation voltage, speed of actuation, stroke (or displacement), actuation force, stored energy, electrical resistivity, mechanical quality factor, and resistance to fracture, fatigue, shock, and stiction. The materials properties governing these parameters are the Young’s modulus, density, fracture strength, intrinsic residual stress, resistivity, and intrinsic material damping. Materials indices are formulated by appropriate combination of these properties and a graphical procedure for materials selection is presented. Our analysis suggests that diamond, alumina, silicon carbide, silicon nitride, and silicon are excellent candidates for high-speed, high-force actuators; polymers for large-displacement, low actuation-voltage devices; and aluminum for low-electrical resistivity, low actuation-voltage and high-speed actuators. The properties of composite actuator structures are briefly discussed.

[1]  R.W. Dutton,et al.  Electrostatic micromechanical actuator with extended range of travel , 2000, Journal of Microelectromechanical Systems.

[2]  M. F. Chang,et al.  A Surface Micromachined Miniature Switch For Telecommunications Applications With Signal Frequencies From DC Up To 4 Ghz , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[3]  William C. Tang,et al.  Electrostatic-comb drive of lateral polysilicon resonators , 1990 .

[4]  N. C. MacDonald,et al.  Optimal shape design of an electrostatic comb drive in microelectromechanical systems , 1998 .

[5]  Klas Hjort,et al.  Diamond and Amorphous Carbon MEMS , 2001 .

[6]  Michael F. Ashby,et al.  Criteria for selecting the components of composites , 1993 .

[7]  Song-Yop Hahn,et al.  Topology optimization of electrostatic actuator using design sensitivity , 2002 .

[8]  V. T. Srikar,et al.  Materials selection in micromechanical design: an application of the Ashby approach , 2003 .

[9]  Mehran Mehregany,et al.  Silicon carbide MEMS for harsh environments , 1998, Proc. IEEE.

[10]  E. Quevy,et al.  Large stroke actuation of continuous membrane for adaptive optics by 3D self-assembled microplates , 2002 .

[11]  Sima Dimitrijev,et al.  Enhanced electrostatic force generation capability of angled comb finger design used in electrostatic comb-drive actuators , 1998 .

[12]  Robert O. Ritchie,et al.  High-cycle Fatigue and Durability of Polycrystalline Silicon Thin ®lms in Ambient Air , 2022 .

[13]  George G. Adams,et al.  A dynamic model, including contact bounce, of an electrostatically actuated microswitch , 2002 .

[14]  J. Schimkat,et al.  Contact materials for microrelays , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[15]  M. Madou Fundamentals of microfabrication , 1997 .

[16]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Angel Rodriguez,et al.  Voltage and pull-in time in current drive of electrostatic actuators , 2002 .

[18]  V. T. Srikar,et al.  A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems , 2003 .

[19]  H. Fujita,et al.  Electrostatic micro torsion mirrors for an optical switch matrix , 1996 .

[20]  E. S. Hung,et al.  Extending the travel range of analog-tuned electrostatic actuators , 1999 .

[21]  S. Senturia,et al.  Speed-energy optimization of electrostatic actuators based on pull-in , 1999 .

[22]  J. Harris,et al.  Micromachined widely tunable vertical cavity laser diodes , 1998 .

[23]  C. Mastrangelo Adhesion-related failure mechanisms in micromechanical devices , 1997 .

[24]  S. M. Spearing,et al.  Materials issues in microelectromechanical systems (MEMS) , 2000 .

[25]  P. Schmid,et al.  Surface micromachined diamond microswitch , 2000 .

[26]  S. Eshelman,et al.  Micromachined low-loss microwave switches , 1999 .

[27]  V. T. Srikar,et al.  The reliability of microelectromechanical systems (MEMS) in shock environments , 2002 .

[28]  S. Senturia Microsystem Design , 2000 .

[29]  Noel C. MacDonald,et al.  A millinewton microloading device , 1996 .

[30]  Luis Castañer,et al.  Pull-in time–energy product of electrostatic actuators: comparison of experiments with simulation , 2000 .

[31]  Arthur J. Epstein,et al.  'Synthetic metals': a novel role for organic polymers , 1989 .

[32]  B. Guldimann,et al.  Electrostatically actuated gas microvalve based on a Ta-Si-N membrane , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[33]  J. Sniegowski,et al.  IC-Compatible Polysilicon Surface Micromachining , 2000 .

[34]  Marek Turowski,et al.  A MEMS shield structure for controlling pull-in forces and obtaining increased pull-in voltages , 2001 .

[35]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[36]  A. Dehe,et al.  Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point , 2002 .

[37]  J. Fluitman,et al.  Electrostatic curved electrode actuators , 1995 .

[38]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[39]  R. Mullen,et al.  Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens† , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  P. Zavracky,et al.  Micromechanical switches fabricated using nickel surface micromachining , 1997 .

[41]  Brian D. Jensen,et al.  Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS , 2001 .

[42]  S. Senturia,et al.  Pull-in time dynamics as a measure of absolute pressure , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[43]  M. Ashby MULTI-OBJECTIVE OPTIMIZATION IN MATERIAL DESIGN AND SELECTION , 2000 .

[44]  V. T. Srikar,et al.  Thermoelastic damping in fine-grained polysilicon flexural beam resonators , 2002 .

[45]  H.J. De Los Santos,et al.  Microwave and mechanical considerations in the design of MEM switches for aerospace applications , 1997, 1997 IEEE Aerospace Conference.

[46]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[47]  T.N. Pornsin-Sirirak,et al.  Flexible parylene actuator for micro adaptive flow control , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[48]  E.R. Deutsch,et al.  Effect of support compliance and residual stress on the shape of doubly supported surface-micromachined beams , 2000, Journal of Microelectromechanical Systems.