Generalized Vandermonde decomposition and its use for multi-dimensional super-resolution
暂无分享,去创建一个
[1] Weiyu Xu,et al. Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).
[2] Yingbo Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..
[3] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[4] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[5] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[6] Yingbo Hua,et al. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .
[7] R. T. Compton,et al. Two dimensional angle and polarization estimation using the ESPRIT algorithm , 1991, Antennas and Propagation Society Symposium 1991 Digest.
[8] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[9] Lihua Xie,et al. Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).
[10] Lihua Xie,et al. Achieving high resolution for super-resolution via reweighted atomic norm minimization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[11] Lihua Xie,et al. On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.
[12] Lihua Xie,et al. Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.
[13] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[14] Petre Stoica,et al. Gridless compressive-sensing methods for frequency estimation: Points of tangency and links to basics , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).
[15] Pál Turán,et al. Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .
[16] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[17] David C. Lay,et al. Factorization of finite rank Hankel and Toeplitz matrices , 1992 .
[18] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[19] Josef A. Nossek,et al. 2D unitary ESPRIT for efficient 2D parameter estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.
[20] Lihua Xie,et al. Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.
[21] Yuxin Chen,et al. Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.
[22] Benjamin Recht,et al. Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.
[23] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .