Generalized Vandermonde decomposition and its use for multi-dimensional super-resolution

The Vandermonde decomposition of Toeplitz matrices, discovered by Carathéodory and Fejér in the 1910s and rediscovered by Pisarenko in the 1970s, forms the basis of modern subspace methods for 1D frequency estimation. Many related numerical tools have also been developed for multi-dimensional (MD), especially 2D, frequency estimation; however, a fundamental question has remained unresolved as to whether an analog of the Vandermonde decomposition holds in the MD case. In this paper, an affirmative answer to this question and a constructive method for finding the decomposition are provided under appropriate conditions. The new result is also used to study MD frequency estimation from compressive data within the recent super-resolution framework. A systematic approach is proposed and a numerical simulation is provided to demonstrate its effectiveness compared to the existing atomic norm method.

[1]  Weiyu Xu,et al.  Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).

[2]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[3]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[4]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[5]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[6]  Yingbo Hua,et al.  A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .

[7]  R. T. Compton,et al.  Two dimensional angle and polarization estimation using the ESPRIT algorithm , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[8]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[9]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[10]  Lihua Xie,et al.  Achieving high resolution for super-resolution via reweighted atomic norm minimization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[12]  Lihua Xie,et al.  Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.

[13]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[14]  Petre Stoica,et al.  Gridless compressive-sensing methods for frequency estimation: Points of tangency and links to basics , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[15]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[16]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[17]  David C. Lay,et al.  Factorization of finite rank Hankel and Toeplitz matrices , 1992 .

[18]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[19]  Josef A. Nossek,et al.  2D unitary ESPRIT for efficient 2D parameter estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[20]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[21]  Yuxin Chen,et al.  Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.

[22]  Benjamin Recht,et al.  Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.

[23]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .