Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands.

All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.

[1]  N. Zheng,et al.  One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. , 2006, Journal of the American Chemical Society.

[2]  P. Prem Kiran,et al.  Optically Bifunctional Heterostructured Nanocrystals , 2008 .

[3]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[4]  M. L. Curri,et al.  Shape and Phase Control of Colloidal ZnSe Nanocrystals , 2005 .

[5]  Philippe Guyot-Sionnest,et al.  n-Type Conducting CdSe Nanocrystal Solids , 2003, Science.

[6]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[7]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[8]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[9]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[10]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[11]  A. Rogach,et al.  Etching of Colloidal InP Nanocrystals with Fluorides: Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency , 2002 .

[12]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[13]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[14]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[15]  Igor L. Medintz,et al.  Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. , 2006, The journal of physical chemistry. B.

[16]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[17]  Won Seok Seo,et al.  Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size‐Controlled Indium Oxide Nanoparticles , 2003 .

[18]  M. Kovalenko,et al.  Nanocrystal superlattices with thermally degradable hybrid inorganic-organic capping ligands. , 2010, Journal of the American Chemical Society.

[19]  I. Krossing,et al.  Noncoordinating anions--fact or fiction? A survey of likely candidates. , 2004, Angewandte Chemie.

[20]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[21]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[22]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[23]  H. Schäfer,et al.  Zur Darstellung und Kristallstruktur der Thiotellurite BaTeS3 · 2 H2O und (NH4)2TeS3 , 1974 .

[24]  M. Kovalenko,et al.  Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. , 2010, Journal of the American Chemical Society.

[25]  M. Kovalenko,et al.  Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. , 2010, Journal of the American Chemical Society.

[26]  E. Linder,et al.  CLXXXIV.—Solution and pseudo-solution. Part IV , 1905 .

[27]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[28]  A. Rogach,et al.  Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals , 1999 .

[29]  Arthur J. Nozik,et al.  SYNTHESIS AND CHARACTERIZATION OF INP QUANTUM DOTS , 1994 .

[30]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[31]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[32]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[33]  E. Verwey The Electrical Double Layer and the Stability of Lyophobic Colloids. , 1935 .

[34]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[35]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .