Semidefinite optimization

[1]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[2]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[3]  A. Nemirovski,et al.  Interior-point methods for optimization , 2008, Acta Numerica.

[4]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[5]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[6]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[7]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[8]  M. Todd Semidefinite optimization , 2001, Acta Numerica.

[9]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[10]  G. S. GASPARIAN,et al.  Minimal imperfect graphs: A simple approach , 1996, Comb..

[11]  D. Knuth The Sandwich Theorem , 1993, Electron. J. Comb..

[12]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[13]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[14]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[15]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[16]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .