Random cubic planar graphs converge to the Brownian sphere

In this paper, the scaling limit of random connected cubic planar graphs (respectively multigraphs) is shown to be the Brownian sphere. The proof consists in essentially two main steps. First, thanks to the known decomposition of cubic planar graphs into their 3-connected components, the metric structure of a random cubic planar graph is shown to be well approximated by its unique 3-connected component of linear size, with modified distances. Then, Whitney's theorem ensures that a 3-connected cubic planar graph is the dual of a simple triangulation, for which it is known that the scaling limit is the Brownian sphere. Curien and Le Gall have recently developed a framework to study the modification of distances in general triangulations and in their dual. By extending this framework to simple triangulations, it is shown that 3-connected cubic planar graphs with modified distances converge jointly with their dual triangulation to the Brownian sphere.

[1]  Benedikt Stufler The scaling limit of random cubic planar graphs , 2022, 2203.07306.

[2]  Benedikt Stufler First-passage percolation on random simple triangulations , 2022, Latin American Journal of Probability and Mathematical Statistics.

[3]  Benedikt Stufler The Uniform Infinite Cubic Planar Graph , 2022, 2202.00592.

[4]  I. Kortchemski,et al.  The mesoscopic geometry of sparse random maps , 2021, Journal de l’École polytechnique — Mathématiques.

[5]  Ariane Carrance Convergence of Eulerian triangulations , 2019, 1912.13434.

[6]  Benedikt Stufler,et al.  Local Convergence of Random Planar Graphs , 2019, Trends in Mathematics.

[7]  Thomas Leh'ericy First-passage percolation in random planar maps and Tutte’s bijection , 2019, Electronic Journal of Probability.

[8]  Marc Noy,et al.  Further results on random cubic planar graphs , 2018, Random Struct. Algorithms.

[9]  Jason Miller LIOUVILLE QUANTUM GRAVITY AS A METRIC SPACE AND A SCALING LIMIT , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[10]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[11]  Mihyun Kang,et al.  Cubic Graphs and Related Triangulations on Orientable Surfaces , 2016, Electron. J. Comb..

[12]  J. L. Gall,et al.  First-passage percolation and local modifications of distances in random triangulations , 2015, Annales scientifiques de l'École normale supérieure.

[13]  L. Addario-Berry,et al.  Joint convergence of random quadrangulations and their cores , 2015, 1503.06738.

[14]  Konstantinos Panagiotou,et al.  Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.

[15]  Jean-Franccois Le Gall,et al.  Random geometry on the sphere , 2014, 1403.7943.

[16]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[17]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[18]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[19]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[20]  Éric Fusy,et al.  On symmetric quadrangulations and triangulations , 2011, Eur. J. Comb..

[21]  Tomasz Luczak,et al.  Two critical periods in the evolution of random planar graphs , 2010, 1006.0444.

[22]  Anita Winter,et al.  Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees) , 2009 .

[23]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[24]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[25]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[26]  M. Krikun Uniform Infinite Planar Triangulation and Related Time-Reversed Critical Branching Process , 2003, math/0311127.

[27]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[28]  O. Schramm,et al.  Uniform Infinite Planar Triangulations , 2002, math/0207153.

[29]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[30]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[31]  Nicholas C. Wormald,et al.  The Size of the Largest Components in Random Planar Maps , 1999, SIAM J. Discret. Math..

[32]  Xavier Gourdon,et al.  Largest component in random combinatorial structures , 1998, Discret. Math..

[33]  S. Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[34]  W. Schnyder Planar graphs and poset dimension , 1989 .

[35]  R. Mullin,et al.  The enumeration of c-nets via quadrangulations , 1968 .

[36]  W. T. Tutte Connectivity in graphs , 1966 .

[37]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[38]  Elton P. Hsu,et al.  THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS BY , 2017 .

[39]  Marc Noy,et al.  Random planar graphs and beyond , 2014 .

[40]  Colin McDiarmid,et al.  Random cubic planar graphs , 2007, Random Struct. Algorithms.

[41]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[42]  H. Whitney 2-Isomorphic Graphs , 1933 .