Barrier formation at Cu, Ag and Au-GaSe layered semiconductors

[1]  C. Tatsuyama,et al.  Reactivity at interfaces of Cu, Ag and Au−GaSe layered compounds , 1989 .

[2]  J. Debever,et al.  Conduction band structure of the III–VI layer compound GaSe studied with inverse photoemission , 1987 .

[3]  Ishida,et al.  Coverage dependence of the work function and charge transfer on the alkali-metal-jellium surface. , 1987, Physical review. B, Condensed matter.

[4]  C. Tatsuyama,et al.  XPS Study on the Chemical Shifts of Crystalline III–VI Layered Compounds , 1985 .

[5]  C. Tatsuyama,et al.  XPS Study on the Change of Surface Potential of GaSe and InSe Induced by Ar+ Sputtering , 1984 .

[6]  R. H. Williams,et al.  Soft X-ray photoemission spectroscopy of chemical reactivity at metal-GaSe interfaces , 1983 .

[7]  A. Nakanishi,et al.  Optimized Bond Orbital Model for III-VI Compounds , 1982 .

[8]  R. H. Williams,et al.  Metal–GaSe and metal–InP interfaces: Schottky barrier formation and interfacial reactions , 1982 .

[9]  R. H. Williams,et al.  Metal-gallium selenide interfaces-observation of the true Schottky limit , 1982 .

[10]  J. Woodall,et al.  Schottky barriers: An effective work function model , 1981 .

[11]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[12]  R. Lieth Preparation and Crystal Growth of Materials with Layered Structures , 1977 .

[13]  F. Shepherd,et al.  Photoelectron studies of the densities of states in the gallium chalcogenides , 1975 .

[14]  M. Schlüter The electronic structure of GaSe , 1973 .

[15]  R. H. Williams,et al.  Surface Properties of the Gallium Monochalcogenides , 1972, July 16.