Architectural CCS

In this article, we discuss the effect of architectures on behaviours and the notions of equivalence for CCS terms. Two types of architectures are considered viz, shared memory systems and distributed memory systems. Processes can be logically migrated in shared memory systems while in distributed memory systems, processes are bound to a location and require explicit migration. Communication in shared memory systems can follow the CCS principle. A complete equational characterisation of the bisimulation equivalence induced by the execution on multiprocessors requires an extended syntax; which captures the process of compiling and loading. To permit a realistic description of communication in distributed systems, asynchronous actions are required. Due to this the complete axiomatisation for the bisimulation equivalence is more sensitive to the causal structure of the processes. A practical interpretation to the complete axiomatisation of the bisimulation equivalence is also given.

[1]  David Gelernter,et al.  Generative communication in Linda , 1985, TOPL.

[2]  J. Davenport Editor , 1960 .

[3]  P. Azema,et al.  The Fomal Description Technique LOTOS , 2001 .

[4]  Andrew Birrell,et al.  Implementing Remote procedure calls , 1983, SOSP '83.

[5]  P. Hudak Exploring parafunctional programming: separating the what from the how , 1988, IEEE Software.

[6]  Inmos Limited,et al.  OCCAM 2 reference manual , 1988 .

[7]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[8]  Nancy A. Lynch,et al.  Distributed Computing: Models and Methods , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Matthew Hennessy,et al.  Observing Localities , 1993, Theor. Comput. Sci..

[10]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[11]  Daniel Le Métayer,et al.  A parallel machine for multiset transformation and its programming style , 1988, Future Gener. Comput. Syst..

[12]  Peter M. Schwarz,et al.  Experience Using Multiprocessor Systems—A Status Report , 1980, CSUR.

[13]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[14]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.

[15]  Liuba Shrira,et al.  Promises: linguistic support for efficient asynchronous procedure calls in distributed systems , 1988, PLDI '88.

[16]  K. Mani Chandy,et al.  Parallelism and Programming: A Perspective , 1987, FSTTCS.

[17]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[18]  Rob J. van Glabbeek,et al.  Petri Net Models for Algebraic Theories of Concurrency , 1987, PARLE.

[19]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[20]  Jan A. Bergstra,et al.  Process theory based on bisimulation semantics , 1988, REX Workshop.

[21]  Richard M. Russell,et al.  The CRAY-1 computer system , 1978, CACM.

[22]  Tomasz Müldner,et al.  On the Algorithmic Properties of Concurrent Programs , 1979, Logic of Programs.

[23]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[24]  Richard P. Hopkins,et al.  Data-Driven and Demand-Driven Computer Architecture , 1982, CSUR.

[25]  Vaughan R. Pratt,et al.  Modeling concurrency with partial orders , 1986, International Journal of Parallel Programming.

[26]  Matthew Hennessy,et al.  Distributed bisimulations , 1989, JACM.