Nonlinear Characterization of Ge 28 Sb 12 Se 60 Bulk and Waveguide Devices References and Links

Single-mode Ge₂₈Sb₁₂Se₆₀ strip waveguides, fabricated with thermal evaporation and lift-off, were demonstrated at 1.03 µm. The linear and nonlinear optical properties of these waveguides were shown to be similar to bulk samples, with differences attributed to small variations in composition of ~4 atomic % or less. From z-scan measurements at 1.03 µm using circularly polarized, ~200 fs pulses at 374 kHz, Ge₂₈Sb₁₂Se₆₀ was found to have a nonlinear refractive index ~130 x fused silica and a two-photon absorption coefficient of 3.5 cm/GW. Given the large two-photon absorption coefficient, this material shows promise for optical limiting applications at 1 µm.

Sungmo Ahn | Wounjhang Park | Juliet T. Gopinath | Molly R. Krogstad | B. Luther-Davies | H. B. Rosenstock | J. Babiskin | S. Spälter | M. Bashkansky | C. Quémard | V. Nazabal | D. Hutchings | G. Boudebs | N. Carlie | C. Florea | J. Gopinath | J. Massera | J. Tchahame | V. Besse | C. Cassagne | R. Boidin | M. Krogstad | C. Pantano | M. Fontana | C. Vigreux | S. Kasap | B. Arcondo | A. Piarristeguy | F. Quochi | C. Haugen | T. Katsufuji | J. Buckley | N. Ponnampalam | M. M. Pai | P. Dwivedi | T. Clement | P. Pureza | K. Tanaka | E. Baudet | C. Vigreux-Bercovici | A. Simens | T. Wei | D. Hagan | L. Kimerling | J. Sanghera | J. Irudayaraj | H. Y. Hwang | S. Cheong | E. V. Stryland | F. Wise | S. Gaylord | N. Feng | H.‐T. Wang | D. Steinmeyer | Eggleton | I. Aggarwal | Liu | S. Madden | K Ogusu | K. Ogusu | V. Q. Nguyen | X. Gai | G Lenz | M. E. Lines | R. E. Slusher | Large Kerr | K. Richardson | J Hu | V. Tarasov | A. Agarwal | L. Petit | V Balan | A. Pradel | M. Almeida | R G Decorby | H. Nguyen | H. Chen | J. Chen | M Sheik-Bahae | A. Said | X. Shen | L. Xu | W. Ji | W. Park | F P Payne | S. Ahn | H. Oyanagi | K E Stubkjaer | L. Sutter | N. Gallmann | U. Matuschek | Keller | J S Sanghera | L. B. Shaw | Z. Dutton | K. Suzuki | H. Nishio | M Dinu | H. Garcia | B Gu | X.-Q Huang | F Ö Ilday | H. Lim | W. G. Clark | M Hass | J. W. Davisson | K Shinkawa | A Ganjoo | H. Jain | C. Yu | M Olivier | P. Nemec | M. Chauvet | G. Renversez | T Wang | W. Wei | R. Wang | Z. Yang | Systematic | Zhang | W. Liu | L. Liu | Y. Xu | G. Chen | Q. Zhang | L Petit | J. Hu | A V Kolovov | A V Kolobov | A. Roy | L. F. Santos | A. Ganjoo | A Ureña | Characterisation | Si-Cmos | J. P. R. Lacey | J. N. Mcmullinm | T. Liang | H. Tsang | F Smektala | V. Couderc | A. Barthélémy | Y.-X Fan | J. He | J. Zimmermann

[1]  Annie Pradel,et al.  CHALCOGENIDE THIN FILMS DEPOSITED BY RADIO-FREQUENCY SPUTTERING , 2004 .

[2]  Guorong Chen,et al.  Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation , 2007 .

[3]  M. Hass,et al.  Measurement of very low absorption coefficients by laser calorimetry. , 1975, Applied optics.

[4]  Leslie Brandon Shaw,et al.  Non-linear properties of chalcogenide glasses and fibers , 2008 .

[5]  W. Ji,et al.  Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity. , 2008, Applied optics.

[6]  Simple and accurate measurement of the absorption coefficient of an absorbing plate by use of the Brewster angle. , 2006, Optics letters.

[7]  Vincent Couderc,et al.  Non-linear optical properties of chalcogenide glasses measured by Z-scan , 2000 .

[8]  A. Kolobov,et al.  Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation , 1997 .

[9]  Xiang Shen,et al.  Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses , 2014 .

[10]  A. Kolobov,et al.  A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides , 1998 .

[11]  Stephen R. Elliott,et al.  Photoinduced effects and metastability in amorphous semiconductors and insulators , 1995 .

[12]  M. Falconieri,et al.  Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers , 1999 .

[13]  H.T. Nguyen,et al.  High index contrast waveguides in chalcogenide glass and polymer , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Keiji Tanaka,et al.  Photoinduced phenomena in As2S3 glass under sub-bandgap excitation , 1996 .

[15]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[16]  Frank W. Wise,et al.  Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser , 2003 .

[17]  H. Jain,et al.  Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation , 2007 .

[18]  Lami,et al.  Observation of Interband Two-Photon Absorption Saturation in CdS. , 1996, Physical review letters.

[19]  J. Chen,et al.  Z-scan theory of two-photon absorption saturation and experimental evidence , 2007 .

[20]  R. C. Miller OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS , 1964 .

[21]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[22]  F. Payne,et al.  A theoretical analysis of scattering loss from planar optical waveguides , 1994 .

[23]  Joseph Maria Kumar Irudayaraj,et al.  Detection and fingerprinting of pathogens : Mid-IR biosensor using amorphous chalcogenide films , 2008 .

[24]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[25]  Reconstructing holographic quintessence , 2006, astro-ph/0604484.

[26]  Anne Kibble,et al.  Handbook of infrared optical materials , 1993 .

[27]  S Spälter,et al.  Large Kerr effect in bulk Se-based chalcogenide glasses. , 2000, Optics letters.

[28]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[29]  Anant Agarwal,et al.  Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses , 2009 .

[30]  Guorong Chen,et al.  Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light , 2009 .

[31]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, CLEO 2012.

[32]  A. Ureña,et al.  Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses , 2007 .

[33]  Luigi Colombo,et al.  Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses , 1987 .

[34]  Kazuhiko Ogusu,et al.  Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region. , 2008, Optics express.

[35]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[36]  Milos A. Popovic,et al.  Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures , 2003 .

[37]  Tak-Keung Liang,et al.  Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Mathieu Chauvet,et al.  Structure, nonlinear properties, and photosensitivity of (GeSe_2)_100-x(Sb_2Se_3)_x glasses , 2014 .

[40]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.