Formal Modeling of Grafcets With Time Petri Nets

Grafcet standard (IEC60848) is a formalism used in the world of manufacturing control, at the behavioral specification stage of a system. For specifying safe-critical systems, mathematical models associated with model-checking tools are necessary for the validation of the correctness. However, grafcets (meaning grafcet diagrams) are only semiformal models since certain aspects may be a source of different interpretations. The usual practice is to go through an intermediate formalism. In this brief, time Petri nets (TPNs) are chosen because they combine simplicity with wide-spreading and they also allow quantitative time analyses useful for the verification of real-time specifications. The main goal is to propose a principle of transforming a grafcet into TPN and to define the rules of this translation. The obstacle to overcome is to conciliate synchronous semantics of grafcet with asynchronous semantics of TPN.

[1]  M. Diaz,et al.  Modeling and Verification of Time Dependent Systems Using Time Petri Nets , 1991, IEEE Trans. Software Eng..

[2]  Alexander Fay,et al.  Transforming Hierarchical Concepts of GRAFCET into a Suitable Petri Net Formalism , 2013, MIM.

[3]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[4]  Dominique L'her Modelisation du grafcet temporise et verification de proprietes temporelles , 1997 .

[5]  Stéphane Klein,et al.  Designing fault-tolerant controllers using SIPN and model-checking , 2003 .

[6]  Didier Lime,et al.  Romeo: A Tool for Analyzing Time Petri Nets , 2005, CAV.

[7]  A. Fay,et al.  Transforming time constraints of a GRAFCET graph into a suitable Petri net formalism , 2013, 2013 IEEE International Conference on Industrial Technology (ICIT).

[8]  Philippe Schnoebelen,et al.  TSMV: a symbolic model checker for quantitative analysis of systems , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[9]  Thomas Chatain,et al.  Symbolic Unfoldings for Networks of Timed Automata , 2006, ATVA.

[10]  François Vernadat,et al.  State Class Constructions for Branching Analysis of Time Petri Nets , 2003, TACAS.

[11]  Enrico Vicario,et al.  Compositional Validation of Time-Critical Systems Using Communicating Time Petri Nets , 1995, IEEE Trans. Software Eng..

[12]  Olivier H. Roux,et al.  Structural translation from Time Petri Nets to Timed Automata , 2005, J. Syst. Softw..

[13]  Ugo Buy,et al.  Formal Modeling of Sequential Function Charts With Time Petri Nets , 2011, IEEE Transactions on Control Systems Technology.

[14]  François Vernadat,et al.  Time Petri Nets Analysis with TINA , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[15]  Charles André Representation and Analysis of Reactive Behaviors: A Synchronous Approach , 2000 .

[16]  A. Semenov,et al.  Verification of asynchronous circuits using time Petri net unfolding , 1996, 33rd Design Automation Conference Proceedings, 1996.

[17]  Georg Frey,et al.  Design and formal analysis of Petri net based logic control algorithms = Entwurf und formale Analyse Petrinetz-basierter Steuerungsalgorithmen , 2002 .

[18]  Philippe Le Parc,et al.  Proving sequential function chart programs using timed automata , 2001, Theor. Comput. Sci..

[19]  Hassane Alla,et al.  Discrete, continuous, and hybrid Petri Nets , 2004 .

[20]  Jean-Marc Roussel,et al.  A formal semantics for Grafcet specifications , 2011, 2011 IEEE International Conference on Automation Science and Engineering.

[21]  Florence Maraninchi,et al.  Operational and Compositional Semantics of Synchronous Automaton Compositions , 1992, CONCUR.