Cryo-CMOS Circuits and Systems for Quantum Computing Applications

A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum computers. In this paper, a cryogenic control system is proposed, along with the required specifications, for the interface of the classical electronics with the quantum processor. To prove the advantages of such a system, the functionality of key circuit blocks is experimentally demonstrated. The characteristic properties of cryo-CMOS are exploited to design a noise-canceling low-noise amplifier for spin-qubit RF-reflectometry readout and a class-F2,3 digitally controlled oscillator required to manipulate the state of qubits.

[1]  T.H. Lee,et al.  Oscillator phase noise: a tutorial , 1999, IEEE Journal of Solid-State Circuits.

[2]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[3]  John D. Cressler,et al.  Extreme Environment Electronics , 2012 .

[4]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[5]  Lin Song,et al.  15.5 Cryo-CMOS circuits and systems for scalable quantum computing , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[7]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[8]  Hao Wu,et al.  25.3 A VCO with implicit common-mode resonance , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[9]  Hannes Bernien,et al.  Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields , 2015, Nature Photonics.

[10]  Robert B. Staszewski,et al.  An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability , 2015, IEEE Journal of Solid-State Circuits.

[11]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[12]  E. Hahn,et al.  Spin Echoes , 2011 .

[13]  G Batey,et al.  A new ultra-low-temperature cryogen-free experimental platform , 2014 .

[14]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[15]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[16]  R. van Langevelde,et al.  Physical Background of MOS Model 11 , 2003 .

[17]  Robert B. Staszewski,et al.  A Class-F CMOS Oscillator , 2013, IEEE Journal of Solid-State Circuits.

[18]  A. Abidi,et al.  Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures , 1994 .

[19]  Edoardo Charbon,et al.  Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures , 2017, 2017 47th European Solid-State Device Research Conference (ESSDERC).

[20]  Robert B. Staszewski,et al.  25.4 A 1/f noise upconversion reduction technique applied to Class-D and Class-F oscillators , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[21]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[22]  Ramses van der Toorn,et al.  RF-Noise Modeling in Advanced CMOS Technologies , 2014, IEEE Transactions on Electron Devices.

[23]  Edoardo Charbon,et al.  Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS , 2016, 2016 IEEE SENSORS.

[24]  Edoardo Charbon,et al.  CryoCMOS hardware technology a classical infrastructure for a scalable quantum computer , 2016, Conf. Computing Frontiers.

[25]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[26]  Torsten Lehmann,et al.  Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: A circuit designer’s perspective , 2014 .

[27]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[28]  M. Biercuk,et al.  Arbitrary quantum control of qubits in the presence of universal noise , 2012, 1211.1163.

[29]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[30]  U. Kleine,et al.  A Low Noise CMOS Preamplifier Operating at 4.2 Kelvin , 1993, ESSCIRC '93: Nineteenth European Solid-State Circuits Conference.

[31]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[32]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[33]  M. J. Biercuk,et al.  The role of master clock stability in scalable quantum information processing , 2016, 1602.04551.

[34]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[35]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[36]  M. A. Rol,et al.  Independent, extensible control of same-frequency superconducting qubits by selective broadcasting , 2015, npj Quantum Information.

[37]  R. J. McIntyre,et al.  On the avalanche initiation probability of avalanche diodes above the breakdown voltage , 1973 .

[38]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[39]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[40]  R. Groves,et al.  Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology , 1997, IEEE J. Solid State Circuits.

[41]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[42]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[43]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[44]  Xin He,et al.  A Microtransceiver for UHF Proximity Links Including Mars Surface-to-Orbit Applications , 2007, Proceedings of the IEEE.

[45]  Robert B. Staszewski,et al.  A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators , 2016, IEEE Journal of Solid-State Circuits.

[46]  Lieven M. K. Vandersypen,et al.  1.4 Quantum computing - the next challenge in circuit and system design , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[47]  D. E. Savage,et al.  Gate fidelity and coherence time of an electron spin in a Si/SiGe quantum dot , 2016 .

[48]  Eddy Simoen,et al.  Impact of CMOS processing steps on the drain current kink of NMOSFETs at liquid helium temperature , 2001 .

[49]  Edoardo Charbon,et al.  A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  B. Nauta,et al.  A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by $N ^{2}$ , 2009, IEEE Journal of Solid-State Circuits.

[51]  J. Anders,et al.  Cryogenic single-chip electron spin resonance detector. , 2014, Journal of magnetic resonance.

[52]  Chewn-Pu Jou,et al.  A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network , 2017, IEEE Journal of Solid-State Circuits.

[53]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[54]  Lin Song,et al.  Cryo-CMOS electronic control for scalable quantum computing , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[55]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.