Superlinear Parabolic Problems

Preliminaries.- Model Elliptic Problems.- Model Parabolic Problems.- Systems.- Equations with Gradient Terms.- Nonlocal Problems.

[1]  N. Mizoguchi,et al.  Blow-up behavior for semilinear heat equations with boundary conditions , 2003, Differential and Integral Equations.

[2]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[3]  Herbert Amann,et al.  Existence and regularity for semilinear parabolic evolution equations , 1984 .

[4]  E. Yanagida,et al.  Solutions with moving singularities for a semilinear parabolic equation , 2009 .

[5]  Tai-Chia Lin,et al.  On Phase-Separation Models: Asymptotics and Qualitative Properties , 2013 .

[6]  Bingchen Liu,et al.  Critical exponents for non-simultaneous blow-up in a localized parabolic system , 2009 .

[7]  Marek Fila,et al.  Interior gradient blow-up in a semilinear parabolic equation , 1996 .

[8]  P. Polácik,et al.  Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains , 2002 .

[9]  Zhi-Qiang Wang,et al.  On elliptic systems with Sobolev critical growth , 2016 .

[10]  Otared Kavian,et al.  Variational problems related to self-similar solutions of the heat equation , 1987 .

[11]  J. Harada Blowup profile for a complex valued semilinear heat equation , 2016 .

[12]  F. Merle,et al.  Threshold and generic type I behaviors for a supercritical nonlinear heat equation , 2011 .

[13]  M. Fila,et al.  Convergence to self-similar solutions for a semilinear parabolic equation , 2008 .

[14]  On backward self-similar blow-up solutions to a supercritical semilinear heat equation , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  A. Porretta,et al.  Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation , 2016, 1610.03144.

[16]  Shi-Zhong Du The singular set of stationary solution for semilinear elliptic equations with supercritical growth , 2014 .

[17]  H. Shahgholian,et al.  Monotonicity formulas for coupled elliptic gradient systems with applications , 2015, Advances in Nonlinear Analysis.

[18]  D. Schmitt,et al.  Global existence for a reaction-diffusion system with a balance law , 1993 .

[19]  F. Weissler,et al.  Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term , 1996 .

[20]  P. Lions,et al.  Solutions of superlinear elliptic equations and their morse indices , 1992 .

[21]  Yohei Fujishima,et al.  Global existence and blow-up of solutions for the heat equation with exponential nonlinearity , 2018, Journal of Differential Equations.

[22]  D. Andreucci,et al.  On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources , 1991 .

[23]  A. Pistoia,et al.  Blow-up for sign-changing solutions of the critical heat equation in domains with a small hole , 2014, 1405.2166.

[24]  STRUCTURAL PROPERTIES OF THE SET OF GLOBAL SOLUTIONS OF THE NONLINEAR HEAT EQUATION , 2010 .

[25]  J. Zienkiewicz,et al.  Finite-time blowup of solutions to some activator-inhibitor systems , 2016 .

[26]  Michel Chipot,et al.  The thermistor problem: existence, smoothness, uniqueness, blowup , 1994 .

[27]  Laurent Veron,et al.  Singularities of solutions of second order quasilinear equations , 1996 .

[28]  Q. Phan Liouville-type Theorems for Polyharmonic Hénon-Lane-Emden System , 2014, 1405.4584.

[29]  M. Winkler,et al.  The influence of space dimension on the large-time behavior in a reaction–diffusion system modeling diallelic selection , 2011, Journal of mathematical biology.

[30]  Qi S. Zhang The Boundary Behavior of Heat Kernels of Dirichlet Laplacians , 2002 .

[31]  J. Matos Blow up of critical and subcritical norms in semilinear heat equations , 1998, Advances in Differential Equations.

[32]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[33]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[34]  L. Desvillettes,et al.  Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics , 2009 .

[35]  Jong-Shenq Guo,et al.  Excluding blowup at zero points of the potential by means of Liouville-type theorems , 2016, Journal of Differential Equations.

[36]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[37]  Yukihiro Seki,et al.  On exact dead-core rates for a semilinear heat equation with strong absorption , 2011 .

[38]  M. Fila,et al.  Blow-up of positive solutions of a semilinear parabolic equation with a gradient term , 2003 .

[39]  E. N. Dancer,et al.  Non-radial singular solutions of Lane-Emden equations in $R^N$ , 2012 .

[40]  M. Grossi A uniqueness result for a semilinear elliptic equation in symmetric domains , 2000, Advances in Differential Equations.

[41]  Fred B. Weissler,et al.  Single point blow-up for a semilinear initial value problem , 1984 .

[42]  L. Véron,et al.  A priori estimates for elliptic equations with reaction terms involving the function and its gradient , 2018, Mathematische Annalen.

[43]  Bei Hu Blow-up Theories for Semilinear Parabolic Equations , 2011 .

[44]  F. Rellich Darstellung der Eigenwerte vonδu+λu=0 durch ein Randintegral , 1940 .

[45]  Elliott H. Lieb,et al.  On the lowest eigenvalue of the Laplacian for the intersection of two domains , 1983 .

[46]  Eiji Yanagida,et al.  Diffusion-Induced Blowup in a Nonlinear Parabolic System , 1998 .

[47]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[48]  M. Loayza,et al.  A nonlocal in time parabolic system whose Fujita critical exponent is not given by scaling , 2011 .

[49]  Jong-Shenq Guo,et al.  Finite time dead-core rate for the heat equation with a strong absorption , 2008 .

[50]  M. Struwe Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems , 1980 .

[51]  I. Ianni Sign-changing radial solutions for the Schr\"odinger-Poisson-Slater problem , 2011, 1108.2803.

[52]  Philippe Souplet,et al.  Blow-up in nonlocal reaction-diffusion equations , 1998 .

[53]  Rémi Schweyer Type II Blow Up for the Four Dimensional Energy Critical Semi Linear Heat Equation , 2012, 1201.2907.

[54]  H. Brezis,et al.  On a class of superlinear elliptic problems , 1977 .

[55]  A. Friedman,et al.  Extinction properties of semilinear heat equations with strong absorption , 1987 .

[56]  Gen Li,et al.  Nonlocal parabolic equation with conserved spatial integral , 2015 .

[57]  Qualitative properties of solutions to a nonlocal evolution system , 2011 .

[58]  Brian Straughan,et al.  Analysis of a convective reaction-diffusion equation II , 1989 .

[59]  M. Grossi,et al.  Local estimates for a semilinear elliptic equation with Sobolev critical exponent and application to a uniqueness result , 2001 .

[60]  M. Bidaut-Véron Local behaviour of the solutions of a class of nonlinear elliptic systems , 2000, Advances in Differential Equations.

[61]  F. Merle,et al.  Refined Uniform Estimates at Blow-Up and Applications for Nonlinear Heat Equations , 1998 .

[62]  F. Weissler,et al.  Transversality of stable and Nehari manifolds for a semilinear heat equation , 2011 .

[63]  M. Fila,et al.  Non-uniqueness of Solutions of a Semilinear Heat Equation with Singular Initial Data , 2016 .

[64]  H. Brezis,et al.  Some simple nonlinear PDE's without solutions , 1998 .

[65]  L. Véron,et al.  Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations , 1993 .

[66]  POSITIVE SOLUTION BRANCH FOR ELLIPTIC PROBLEMS WITH CRITICAL INDEFINITE NONLINEARITY , 2005 .

[67]  Takashi Suzuki,et al.  Semilinear parabolic equation in RN associated with critical Sobolev exponent , 2010 .

[68]  E. Zuazua,et al.  Null controllability of viscous Hamilton-Jacobi equations ✩ , 2012 .

[69]  M. Fila,et al.  Linear and nonlinear heat equations in $L^q_\delta$ spaces and universal bounds for global solutions , 2001 .

[70]  Y. Naito Self-similar solutions for a semilinear heat equation with critical Sobolev exponent , 2008 .

[71]  Jürgen Saal,et al.  Nonlinear partial differential equations : asymptotic behavior of solutions and self-similar solutions , 2010 .

[72]  A. Lacey,et al.  Finite-time blowup for a particular parabolic system , 1990 .

[73]  Philippe Souplet,et al.  The proof of the Lane–Emden conjecture in four space dimensions , 2009 .

[74]  D. Ye,et al.  Liouville theorems for stable solutions of biharmonic problem , 2013 .

[75]  B. Gilding,et al.  The Cauchy problem for ut=Δu+|∇u|q, large-time behaviour , 2005 .

[76]  N. Mizoguchi Boundedness of global solutions for a supercritical semilinear heat equation and its application , 2005 .

[77]  C. Budd,et al.  The existence of bounded solutions of a semilinear elliptic equation , 1989 .

[78]  Enzo Mitidieri,et al.  Positive Solutions of Semilinear Elliptic Systems , 1992 .

[79]  Alberto Bressan,et al.  Stable blow-up patterns , 1992 .

[80]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[81]  B. Sirakov,et al.  Proportionality of Components, Liouville Theorems and a Priori Estimates for Noncooperative Elliptic Systems , 2013, 1312.1380.

[82]  Peter Meier,et al.  On the critical exponent for reaction-diffusion equations , 1990 .

[83]  Xavier Cabré,et al.  Weak Eigenfunctions for the Linearization of Extremal Elliptic Problems , 1998 .

[84]  Mingxin Wang Blow-up rate for a semilinear reaction diffusion system☆ , 2002 .

[85]  T. Cazenave,et al.  Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value , 2017, American Journal of Mathematics.

[86]  Yongshan Cheng Effective potential of two coupled binary matter wave bright solitons with spatially modulated nonlinearity , 2009 .

[87]  P. Souplet,et al.  Global existence from single-component _{} estimates in a semilinear reaction-diffusion system , 2002 .

[88]  Ruixiang Xing A priori estimates for global solutions of semilinear heat equations in Rn , 2008 .

[89]  S. Taliaferro Initial blow-up of solutions of semilinear parabolic inequalities , 2009, 0911.3816.

[90]  Hiroshi Matano,et al.  Convergence of solutions of one-dimensional semilinear parabolic equations , 1978 .

[91]  M. Winkler,et al.  Initial blow-up rates and universal bounds for nonlinear heat equations , 2004 .

[92]  Marek Fila,et al.  Backward selfsimilar solutions of supercritical parabolic equations , 2009, Appl. Math. Lett..

[93]  L. A. Peletier,et al.  Observations on blow up and dead cores for nonlinear parabolic equations , 1989 .

[94]  D. Passaseo Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains , 1989 .

[95]  M. Fila,et al.  The blow-up rate for semilinear parabolic problems on general domains , 2001 .

[96]  Fang Li,et al.  Global existence and finite time blow-up of solutions of a Gierer–Meinhardt system☆ , 2017 .

[97]  J. Bebernes,et al.  Final time blowup profiles for semilinear parabolic equations via center manifold theory , 1992 .

[98]  D. Andreucci Degenerate parabolic equations with initial data measures , 1997 .

[99]  Tobias Weth,et al.  Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level , 2005, Differential and Integral Equations.

[100]  Y. Giga,et al.  On Blow up at Space Infinity for Semilinear Heat Equations , 2006 .

[101]  W. Ni,et al.  Global existence, large time behavior and life span of solutions of a semilinear parabolic cauchy problem , 1992 .

[102]  Filomena Pacella,et al.  Sign-changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations☆ , 2012 .

[103]  P. Souplet,et al.  A priori estimates of global solutions of superlinear parabolic problems without variational structure , 2003 .

[104]  H. Amann,et al.  A Priori Bounds and Multiple Solutions for Superlinear Indefinite Elliptic Problems , 1998 .

[105]  H. Zaag,et al.  Profile for a Simultaneously Blowing up Solution to a Complex Valued Semilinear Heat Equation , 2013, 1306.4435.

[106]  M. Fila,et al.  Reaction versus diffusion: blow-up induced and inhibited by diffusivity , 2005 .

[107]  N. Mizoguchi Type-II blowup for a semilinear heat equation , 2004, Advances in Differential Equations.

[108]  Juncheng Wei,et al.  Infinite-time blow-up for the 3-dimensional energy-critical heat equation , 2017, Analysis & PDE.

[109]  T. Cazenave,et al.  An equation whose Fujita critical exponent is not given by scaling , 2008 .

[110]  Henri Berestycki,et al.  Variational methods for indefinite superlinear homogeneous elliptic problems , 1995 .

[111]  P. Polácik,et al.  Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems , 2007 .

[112]  Single-point blow-up for semilinear parabolic equations in some non-radial domains , 1988 .

[113]  M. Ishiwata On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent , 2010 .

[114]  C. Dohmen,et al.  Structure of positive radial solutions to the Haraux-Weissler equation , 1998 .

[115]  F. Merle,et al.  Classification of type I and type II behaviors for a supercritical nonlinear heat equation , 2009 .

[116]  A. Lacey Global blow-up of a nonlinear heat equation , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[117]  Y. Giga A bound for global solutions of semilinear heat equations , 1986 .

[118]  A. Youkana,et al.  Large‐time behaviour and blow up of solutions for Gierer–Meinhardt systems , 2016 .

[119]  F. Merle,et al.  Dynamics Near the Ground State for the Energy Critical Nonlinear Heat Equation in Large Dimensions , 2016, 1604.08323.

[120]  H. Zaag,et al.  Construction and stability of blowup solutions for a non-variational semilinear parabolic system , 2016, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[121]  C. Peirce An unpublished manuscript) , 2016 .

[122]  Fulbert Mignot,et al.  Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe. , 1980 .

[123]  Guy Barles,et al.  On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations , 2004 .

[124]  Hiroshi Matano,et al.  Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems , 1984 .

[125]  Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth , 2001 .

[126]  M. A. Herrero,et al.  A uniqueness result for a semilinear reaction-diffusion system , 1991 .

[127]  P. Souplet Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés , 1996 .

[128]  Fred B. Weissler,et al.  An L∞ blow‐up estimate for a nonlinear heat equation , 1985 .

[129]  P. Polácik,et al.  Nonconvergent Bounded Trajectories in Semilinear Heat Equations , 1996 .

[130]  Miroslav Chlebík,et al.  From critical exponents to blow-up rates for parabolic problems , 2000 .

[131]  Minkyu Kwak,et al.  SELF-SIMILAR SOLUTIONS OF A SEMILINEAR HEAT EQUATION , 2004 .

[132]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[133]  R. Eymard,et al.  A reaction–diffusion system with fast reversible reaction , 2003, 0808.0251.

[134]  Hong-Ming Yin,et al.  Semilinear parabolic equations with prescribed energy , 1995 .

[135]  F. Weissler,et al.  Blow Up in ℝn for a Parabolic Equation with a Damping Nonlinear Gradient Term , 1992 .

[136]  Daniele Andreucci,et al.  Liouville theorems and blow up behaviour in semilinear reaction diffusion systems , 1997 .

[137]  Tobias Weth,et al.  Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations , 2008 .

[138]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[139]  P. Felmer,et al.  On superquadratic elliptic systems , 1994 .

[140]  A. Barabanova On the global existence of solutions of a reaction-diffusion equation with exponential nonlinearity , 1994 .

[141]  E. Laamri Global Existence of Classical Solutions for a Class of Reaction-Diffusion Systems , 2011, 1102.4683.

[142]  F. Weissler,et al.  Poincaré's inequality and global solutions of a nonlinear parabolic equation , 1999 .

[143]  A. Pulkkinen Blow‐up profiles of solutions for the exponential reaction‐diffusion equation , 2011, 1102.4158.

[144]  P. Souplet Infinite time blow-up for superlinear parabolic problems with localized reaction , 2004 .

[145]  Keng Deng,et al.  Blow-up rates for parabolic systems , 1996 .

[146]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[147]  O. Rey A multiplicity result for a variational problem with lack of compactness , 1989 .

[148]  P. Souplet,et al.  Admissible Lp norms for local existence and for continuation in semilinear parabolic systems are not the same , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[149]  J. Busca Symmetry and nonexistence results for Emden-Fowler equations in cones , 2001, Differential and Integral Equations.

[150]  Andrew Alfred Lacey,et al.  Thermal runaway in a non-local problem modelling Ohmic heating: Part I: Model derivation and some special cases , 1995, European Journal of Applied Mathematics.

[151]  Tobias Weth,et al.  Liouville‐type results for non‐cooperative elliptic systems in a half‐space , 2012, J. Lond. Math. Soc..

[152]  J. Rubinstein,et al.  Nonlocal reaction−diffusion equations and nucleation , 1992 .

[153]  Y. Naito Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data , 2004 .

[154]  Enzo Mitidieri,et al.  A RELLICH TYPE IDENTITY AND APPLICATIONS , 1993 .

[155]  Miguel A. Herrero,et al.  Blow-up behaviour of one-dimensional semilinear parabolic equations , 1993 .

[156]  N. Mizoguchi Rate of Type II blowup for a semilinear heat equation , 2007 .

[157]  Y. Naito,et al.  Existence of peaking solutions for semilinear heat equations with blow-up profile above the singular steady state , 2019, Nonlinear Analysis.

[158]  Stathis Filippas,et al.  Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[159]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[160]  Howard A. Levine,et al.  A general approach to critical Fujita exponents in nonlinear parabolic problems , 1998 .

[161]  M. Pierre Weak solutions and supersolutions in $ L^1 $ for reaction-diffusion systems , 2003 .

[162]  S. Solimini,et al.  Concentration estimates and multiple solutions to elliptic problems at critical growth , 2002, Advances in Differential Equations.

[163]  M. Souto A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems , 1995, Differential and Integral Equations.

[164]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[165]  On finite-time blow-up for a nonlocal parabolic problem arising from shear bands in metals , 2007 .

[166]  L. Desvillettes,et al.  Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations , 2006 .

[167]  S. Terracini,et al.  Existence and Nonexistence of Entire Solutions for Non-Cooperative Cubic Elliptic Systems , 2010, 1007.3007.

[168]  H. Amann,et al.  BOUNDED R00-CALCULUS FOR ELLIPTIC OPERATORS , 2013 .

[169]  L. Brandolese,et al.  Blowup for the nonlinear heat equation with small initial data in scale-invariant Besov norms , 2019, Journal of Functional Analysis.

[170]  Philippe Souplet,et al.  Uniform blow‐up profile and boundary behaviour for a non‐local reaction–diffusion equation with critical damping , 2004 .

[171]  Maria J. Esteban A remark on the existence of positive periodic solutions of superlinear parabolic problems , 1988 .

[172]  T. Bartsch,et al.  A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems , 2008 .

[173]  Yoshikazu Giga,et al.  A single point blow-up for solutions of semilinear parabolic systems , 1987 .

[175]  T. Cazenave,et al.  On the structure of global solutions of the nonlinear heat equation in a ball , 2009 .

[176]  Y. Giga,et al.  On blow‐up rate for sign‐changing solutions in a convex domain , 2003 .

[177]  Miron Nicolesco Sur l'équation de la chaleur , 1937 .

[178]  Nassif Ghoussoub,et al.  On the H\'enon-Lane-Emden conjecture , 2011, 1107.5611.

[179]  A. Lacey Thermal runaway in a non-local problem modelling Ohmic heating. Part II: General proof of blow-up and asymptotics of runaway , 1995, European Journal of Applied Mathematics.

[180]  A. Quaas,et al.  Loss of boundary conditions for fully nonlinear parabolic equations with superquadratic gradient terms , 2016, 1609.09692.

[181]  Yuan Lou,et al.  Necessary and sufficient condition for the existence of positive solutions of certain cooperative system , 1996 .

[182]  Spectral properties of stationary solutions of the nonlinear heat equation , 2011 .

[183]  N. Kavallaris,et al.  Non-Local Partial Differential Equations for Engineering and Biology , 2017 .

[184]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[185]  Jong-Shenq Guo,et al.  Boundedness of global solutions of a supercritical parabolic equation , 2008 .

[186]  V. Galaktionov,et al.  Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents , 2003 .

[187]  Yi A. Li,et al.  Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus , 2019, Discrete & Continuous Dynamical Systems - A.

[188]  V. Benci,et al.  The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems , 1991 .

[189]  A. Friedman,et al.  Nonlinear Parabolic Equations Involving Measures as Initial Conditions , 1981 .

[190]  R. Kohn,et al.  A rescaling algorithm for the numerical calculation of blowing-up solutions , 1988 .

[191]  H. Amann,et al.  Optimal Control Problems with Final Observation Governed by Explosive Parabolic Equations , 2005, SIAM J. Control. Optim..

[192]  Changshou Lin Uniqueness of least energy solutions to a semilinear elliptic equation in ℝ2 , 1994 .

[193]  L. Peletier,et al.  Large solutions of elliptic equations involving critical exponents , 1988 .

[194]  Y. Giga,et al.  Navier‐Stokes flow in R3 with measures as initial vorticity and Morrey spaces , 1988 .

[195]  K. Fellner,et al.  GLOBAL CLASSICAL SOLUTIONS TO QUADRATIC SYSTEMS WITH MASS CONSERVATION IN ARBITRARY DIMENSIONS , 2018 .

[196]  Runzhang Xu,et al.  Global existence for a singular Gierer–Meinhardt system , 2017 .

[197]  T. Cazenave,et al.  Global existence and blowup for sign-changing solutions of the nonlinear heat equation , 2009 .

[198]  E. Yanagida,et al.  A Liouville property and quasiconvergence for a semilinear heat equation , 2005 .

[199]  J. Coron,et al.  On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain , 1988 .

[200]  L. Peletier,et al.  Emden-Fowler equations involving critical exponents , 1986 .

[201]  M. Struwe,et al.  Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces , 2015, 1511.07685.

[202]  Philippe Laurençot,et al.  Decay estimates for a viscous Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions , 2007, Asymptot. Anal..

[203]  Bidaut-Véron Marie-Francoise,et al.  Asymptotics of solutions of some nonlinear elliptic systems , 1996 .

[204]  Yichao Chen,et al.  Uniform blow-up profiles for nonlinear and nonlocal reaction–diffusion equations , 2009 .

[205]  Michael Winkler,et al.  Convergence to a singular steady state of a parabolic equation with gradient blow-up , 2007, Appl. Math. Lett..

[206]  I. Birindelli,et al.  Liouville theorems for elliptic inequalities and applications , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[207]  François Hamel,et al.  Travelling Fronts and Entire Solutions¶of the Fisher-KPP Equation in ℝN , 2001 .

[208]  P. Quittner,et al.  Boundedness and a priori estimates of solutionsto elliptic systemswith Dirichlet-Neumann boundary conditions , 2010 .

[209]  Gabriella Tarantello,et al.  On semilinear elliptic equations with indefinite nonlinearities , 1993 .

[210]  Wei-Ming Ni,et al.  DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .

[211]  L. Véron,et al.  Boundary singularities of positive solutions of some nonlinear elliptic equations Singularites au bord de solutions positives d'´equations elliptiques non-lineaires , 2006, math/0611123.

[212]  W. Ni,et al.  Singular behavior in nonlinear parabolic equations , 1985 .

[213]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[214]  Stabilization of solutions of a nonlinear parabolic equation with a gradient term , 1994 .

[215]  Qingyi Chen,et al.  The Asymptotic Behavior of Blowup Solution of Localized Nonlinear Equation , 1996 .

[216]  M. Winkler,et al.  Classification of large-time behaviors in a reaction-diffusion system modeling diallelic selection. , 2012, Mathematical biosciences.

[217]  N. Mizoguchi On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity , 2002 .

[218]  C. Stinner,et al.  Very slow convergence rates in a semilinear parabolic equation , 2010 .

[219]  F. Gazzola,et al.  ON THE ROLE OF SPACE DIMENSION n = 2 + 2 √ 2 IN THE SEMILINEAR BREZIS-NIRENBERG EIGENVALUE PROBLEM 1 , 2001 .

[220]  H. Amann Parabolic evolution equations and nonlinear boundary conditions , 1988 .

[221]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[222]  P. Lions Résolution de problèmes elliptiques quasilinéaires , 1980 .

[223]  M. Cannone Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2022 .

[224]  Periodic solutions for the Allen-Cahn equation , 2015 .

[225]  H. Zaag On the regularity of the blow-up set for semilinear heat equations , 2002 .

[226]  Kyûya Masuda,et al.  On the global existence and asymptotic behavior of solutions of reaction-diffusion equations , 1983 .

[227]  J. Takahashi Solvability of a Semilinear Parabolic Equation with Measures as Initial Data , 2015 .

[228]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .

[229]  Q. Phan Singularity and blow-up estimates via Liouville-type theorems for Hardy–Hénon parabolic equations , 2012, 1210.7722.

[230]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[231]  James C. Robinson,et al.  A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces , 2014, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[232]  J. Rossi,et al.  On the Dependence of the Blow-Up Time with Respect to the Initial Data in a Semilinear Parabolic Problem , 2003 .

[233]  P. Rouchon Universal bounds for global solutions of a diffusion equation with a nonlocal reaction term , 2003 .

[234]  P. Biler,et al.  Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation , 2004 .

[235]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[236]  Keng Deng,et al.  The Role of Critical Exponents in Blow-Up Theorems: The Sequel , 2000 .

[237]  Hiroshi Tanaka,et al.  On the growing up problem for semilinear heat equations , 1977 .

[238]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[239]  Zhijun Zhang,et al.  On a Dirichlet Problem with a Singular Nonlinearity , 1995 .

[240]  A. Peirce,et al.  The blowup property of solutions to some diffusion equations with localized nonlinear reactions , 1992 .

[241]  F. Pacella,et al.  Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle , 1999 .

[242]  T. Cazenave,et al.  Perturbations of self-similar solutions , 2018, Dynamics of Partial Differential Equations.

[243]  N. Mizoguchi Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity , 2004 .

[244]  H. Berestycki,et al.  A perturbation method in critical point theory and applications , 1981 .

[245]  Hongwei Chen Positive Steady‐state Solutions of a Non‐linear Reaction–Diffusion System , 1997 .

[246]  M. A. Herrero,et al.  Generic behaviour of one-dimensional blow up patterns , 1992 .

[247]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[248]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[249]  J. Bricmont,et al.  Universality in blow-up for nonlinear heat equations , 1993 .

[250]  P. Quittner Universal bound for global positive solutions of a superlinear parabolic problem , 2001 .

[251]  A. Lacey The form of blow-up for nonlinear parabolic equations , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[252]  M. Pierre,et al.  Critère d'existence de solutions positives pour des équations semi-linéaires non monotones , 1985 .

[253]  H. Matano Blow-up in Nonlinear Heat Equations with Supercritical Power Nonlinearity , 2007 .

[254]  P. Quittner Uniqueness of singular self-similar solutions of a semilinear parabolic equation , 2016, Differential and Integral Equations.

[255]  W. Zou,et al.  Monotonicity and nonexistence results to cooperative systems in the half space , 2014 .

[256]  Katsuo Takahashi,et al.  Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation , 1987 .

[257]  Pierre-Louis Lions,et al.  On the existence of a positive solution of semilinear elliptic equations in unbounded domains , 1997 .

[258]  N. Alaa Solutions faibles d'équations paraboliques quasilinéaires avec données initiales mesurés , 1996 .

[259]  Basilis Gidas,et al.  Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth , 1989 .

[260]  Ryuichi Suzuki,et al.  Blow-up behavior for a nonlinear heat equation with a localized source in a ball , 2005 .

[261]  M. Pierre,et al.  Dissipative reaction diffusion systems with quadratic growth , 2019, Indiana University Mathematics Journal.

[262]  J. Rossi,et al.  Dependence of the blow‐up time with respect to parameters and numerical approximations for a parabolic problem , 2004 .

[263]  H. Amann ON PERIODIC SOLUTIONS OF SUPERLINEAR PARABOLIC PROBLEMS , 2002 .

[264]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[265]  C. Stinner,et al.  Rates of convergence to zero for a semilinear parabolic equation with a critical exponent , 2011 .

[266]  P. J. McKenna,et al.  A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains , 2007 .

[267]  D. Eberly,et al.  A description of self-similar Blow-up for dimensions n ⩾ 3 , 1988 .

[268]  Henghui Zou A Priori Estimates and Existence for Strongly Coupled Non-Linear Schrodinger Systems , 2009 .

[269]  M. Herrero,et al.  Explosion de solutions d'équations paraboliques semilinéaires supercritiques , 1994 .

[270]  Victor A. Galaktionov,et al.  Rate of Approach to a Singular Steady State in Quasilinear Reaction-Diffusion Equations , 1998 .

[271]  Jong-Shenq Guo,et al.  Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity , 2012 .

[272]  Dieter Bothe,et al.  Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate , 2010 .

[273]  S. Taliaferro Blow-up of solutions of nonlinear parabolic inequalities , 2009 .

[274]  Zongming Guo,et al.  Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent , 2011 .

[275]  P. Rabinowitz Multiple critical points of perturbed symmetric functionals , 1982 .

[276]  H. Weinberger The retreat of the less fit allele in a population-controlled model for population genetics , 2014, Journal of mathematical biology.

[277]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[278]  E. N. Dancer A Note on an Equation with Critical Exponent , 1988 .

[279]  M. Fila,et al.  Rate of convergence to a singular steady state of a supercritical parabolic equation , 2008 .

[280]  F. Merle,et al.  Compactness and single-point blowup of positive solutions on bounded domains , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[281]  Olivier Druet,et al.  Best constants in Sobolev inequalities , 1998 .

[282]  Carlos Esteve Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equation in domains with non-constant curvature , 2019, Journal de Mathématiques Pures et Appliquées.

[283]  F. Weissler Existence and non-existence of global solutions for a semilinear heat equation , 1981 .

[284]  M. Fila,et al.  Very slow grow-up of solutions of a semi-linear parabolic equation , 2011, Proceedings of the Edinburgh Mathematical Society.

[285]  F. Merle,et al.  Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view , 2000 .

[286]  E. N. Dancer,et al.  A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system , 2010 .

[287]  T. Bartsch,et al.  Superstable Manifolds of Semilinear Parabolic Problems , 2005 .

[288]  W. Troy Symmetry properties in systems of semilinear elliptic equations , 1981 .

[289]  F. Quirós,et al.  Non-simultaneous blow-up in a semilinear parabolic system , 2001 .

[290]  Jong-Shenq Guo,et al.  Blowup rate estimates for the heat equation with a nonlinear gradient source term , 2008 .

[291]  F. Merle,et al.  A Liouville theorem for vector-valued nonlinear heat equations and applications , 2000 .

[292]  T. Goudon,et al.  Solutions of the 4-species quadratic reaction-diffusion system are bounded and C∞-smooth, in any space dimension , 2017, Analysis & PDE.

[293]  N. Mizoguchi Growup of solutions for a semilinear heat equation with supercritical nonlinearity , 2006 .

[294]  Appearance of anomalous singularities in a semilinear parabolic equation , 2011 .

[295]  C. Bandle,et al.  Progress in partial differential equations : elliptic and parabolic problems , 1992 .

[296]  Debora Amadori Unstable blow-up patterns , 1995 .

[297]  Michinori Ishiwata,et al.  Positive solution to semilinear parabolic equation associated with critical Sobolev exponent , 2013, Nonlinear Differential Equations and Applications NoDEA.

[298]  P. Polácik,et al.  A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation , 2006 .

[299]  P. Polácik,et al.  Singularity and decay estimates in superlinear problems via liouville-type theorems. Part II: Parabolic equations , 2007 .

[300]  H. Bellout Blow-up of solutions of parabolic equations with nonlinear memory , 1987 .

[301]  E. N. Dancer Superlinear problems on domains with holes of asymptotic shape and exterior problems , 1998 .

[302]  Zhigui Lin Blowup Estimates for a Mutualistic Model in Ecology , 2002 .

[303]  Andrew Alfred Lacey,et al.  Global, Unbounded Solutions to a Parabolic Equation , 1993 .

[304]  Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates , 2005, cond-mat/0506405.

[305]  L. Boccardo,et al.  Existence results for some quasilinear parabolic equations , 1989 .

[306]  P. Souplet,et al.  Universal blow-up rates for a semilinear heat equation and applications , 2003, Advances in Differential Equations.

[307]  M. Fila Chapter 2 - Blow-up of Solutions of Supercritical Parabolic Equations , 2005 .

[308]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[309]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[310]  N. Mizoguchi Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation , 2009 .

[311]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[312]  M. Caputo,et al.  Global Regularity of Solutions to Systems of Reaction–Diffusion with Sub-Quadratic Growth in Any Dimension , 2009, 0901.4359.

[313]  P. Souplet,et al.  Single-point blow-up for parabolic systems with exponential nonlinearities and unequal diffusivities , 2015, 1510.02505.

[314]  M. Pierre Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey , 2010 .

[315]  F. Gazzola,et al.  The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four , 2008 .

[316]  Philippe Souplet,et al.  Geometry of unbounded domains,poincaré inequalities and stability in semilinear parabolic equations , 1999 .

[317]  P. Baras Non-unicité des solutions d'une équation d'évolution non linéaire , 1983 .

[318]  F. Rothe Uniform bounds from bounded Lp-functionals in reaction-diffusion equations , 1982 .

[319]  E. Zuazua,et al.  Moments, masses de Dirac et décomposition de fonctions , 1992 .

[320]  Peter Polácik,et al.  Localized Solutions of a Semilinear Parabolic Equation with a Recurrent Nonstationary Asymptotics , 2014, SIAM J. Math. Anal..

[321]  L. Véron,et al.  Integral representation of solutions of semilinear elliptic equations in cylinders and applications , 1994 .

[322]  Chunhong Xie,et al.  Global existence and blow-up of solutions to a nonlocal reaction-diffusion system , 2003 .

[323]  Hiroshi Matano,et al.  An application of braid group theory to the finite time dead-core rate , 2010 .

[324]  On the infinitely many positive solutions of a supercritical elliptic problem , 2001 .

[325]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[326]  A. Ponce,et al.  Singularities of positive supersolutions in elliptic PDEs , 2004 .

[327]  Kazuhiro Ishige,et al.  The decay of the solutions for the heat equation with a potential , 2009 .

[328]  Global existence of solutions of parabolic problems with nonlinear boundary conditions , 1996 .

[329]  M. Fila Boundedness of global solutions of nonlocal parabolic equations , 1997 .

[330]  Bingchen Liu,et al.  Properties of non-simultaneous blow-up solutions in nonlocal parabolic equations , 2010 .

[331]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[332]  D. Passaseo Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains , 1993 .

[333]  M. A. Herrero,et al.  Blow–Up Profiles in One–Dimensional. Semilinear Parabolic Problems , 1992 .

[334]  William C. Troy,et al.  The existence of bounded solutions of a semilinear heat equation , 1987 .

[335]  Shi-Zhong Du On partial regularity of the borderline solution of semilinear parabolic equation with critical growth , 2013, Advances in Differential Equations.

[336]  Singular and regular solutions of a nonlinear parabolic system , 2003, math/0302129.

[337]  M. Fila,et al.  Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent , 2007, Advances in Differential Equations.

[338]  Mingxin Wang,et al.  Existence of Positive Stationary Solutions and Threshold Results for a Reaction–Diffusion System☆ , 1996 .

[339]  Victor A. Galaktionov,et al.  The problem of blow-up in nonlinear parabolic equations , 2002 .

[340]  D. G. Figueiredo,et al.  On a resonant-superlinear elliptic problem , 2003 .

[341]  Kyûya Masuda Analytic solutions of some nonlinear diffusion equations , 1984 .

[342]  M. Fila,et al.  Global solutions of a semilinear parabolic equation , 1999, Advances in Differential Equations.

[343]  F. Merle,et al.  Modulation Theory for the Blowup of Vector-Valued Nonlinear Heat Equations , 1995 .

[344]  Nicholas D. Alikakos,et al.  An application of the invariance principle to reaction-diffusion equations , 1979 .

[345]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[346]  Fred B. Weissler,et al.  Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations , 1986 .

[347]  H. Zaag,et al.  A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up , 2010 .

[348]  E. Yanagida,et al.  Convergence of Anisotropically Decaying Solutions of a Supercritical Semilinear Heat Equation , 2009 .

[349]  Marek Fila,et al.  Remarks on blow up for a nonlinear parabolic equation with a gradient term , 1991 .

[350]  N. Mizoguchi,et al.  Critical Exponents for the Blowup of Solutions with Sign Changes in a Semilinear Parabolic Equation, II , 1998 .

[351]  N. Yip,et al.  Finite time blow-up of parabolic systems with nonlocal terms , 2014 .

[352]  Atsuko Okada,et al.  Total versus single point blow-up of solutions of a semilinear parabolic equation with localized reaction , 2003 .

[353]  N. Kavallaris,et al.  On the dynamics of a non-local parabolic equation arising from the Gierer–Meinhardt system , 2016, 1605.04083.

[354]  Basilis Gidas,et al.  A priori bounds for positive solutions of nonlinear elliptic equations , 1981 .

[355]  A. Marciniak-Czochra,et al.  Diffusion-driven blowup of nonnegative solutions to reaction-diffusion-ODE systems , 2015, Differential and Integral Equations.

[356]  Hitoshi Ishii,et al.  Asymptotic stability and blowing up of solutions of some nonlinear equations , 1977 .

[357]  Y. Giga,et al.  On instant blow-up for semilinear heat equations with growing initial data , 2008 .

[358]  M. A. Herrero,et al.  A semilinear parabolic system in a bounded domain , 1993 .

[359]  L. Peletier,et al.  Positive solutions of elliptic equations involving supercritical growth , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[360]  Robert Kersner,et al.  The Cauchy problem for u t = ?u+|? u| q , 2003 .

[361]  L. Véron,et al.  Isolated boundary singularities of semilinear elliptic equations , 2009, 0902.0449.

[362]  Y. Naito The role of forward self-similar solutions in the Cauchy problem for semilinear heat equations , 2012 .

[363]  C. Stinner Very slow convergence to zero for a supercritical semilinear parabolic equation , 2009, Advances in Differential Equations.

[364]  Chunlai Mu,et al.  Lifespan and a new critical exponent for a nonlocal parabolic equation with slowly decay initial values , 2013 .

[365]  A. Tersenov,et al.  Global Solvability for a Class of Quasilinear Parabolic Problems , 2001 .

[366]  A. Haraux,et al.  CONVERGENCE TO A POSITIVE EQUILIBRIUM FOR SOME NONLINEAR EVOLUTION EQUATIONS IN A BALL , 1992 .

[367]  N. Mizoguchi Multiple blowup of solutions for a semilinear heat equation , 2005 .

[368]  K. Fellner,et al.  Exponential decay towards equilibrium and global classical solutions for nonlinear reaction–diffusion systems , 2015, 1504.06711.

[369]  F. Pacella,et al.  Morse index and uniqueness of positive solutions of the Lane-Emden problem in planar domains , 2018, Journal de Mathématiques Pures et Appliquées.

[370]  F. Leoni Explicit subsolutions and a Liouville theorem for fully nonlinear uniformly elliptic inequalities in halfspaces , 2011, 1111.1083.

[371]  H. Amann,et al.  Elliptic boundary value problems involving measures: existence, regularity, and multiplicity , 1998, Advances in Differential Equations.

[372]  Pierre Raphael,et al.  On the Stability of Type I Blow Up For the Energy Super Critical Heat Equation , 2016, Memoirs of the American Mathematical Society.

[373]  Q. Phan,et al.  A Liouville-type theorem for the 3-dimensional parabolic Gross–Pitaevskii and related systems , 2015, 1507.07192.

[374]  J. Vázquez,et al.  On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term , 1995 .

[375]  Jack K. Hale,et al.  Structural stability for time-periodic one-dimensional parabolic equations , 1992 .

[376]  S. Bricher Total versus Single Point Blow-Up for a Nonlocal Gaseous Ignition Model , 2002 .

[377]  P. Souplet Morrey spaces and classification of global solutions for a supercritical semilinear heat equation in R n , 2016, 1604.01667.

[378]  V. M. Tikhomirov,et al.  A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem , 1991 .

[379]  Y. Naito Asymptotically self-similar behaviour of global solutions for semilinear heat equations with algebraically decaying initial data , 2020, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[380]  Wei-Ming Ni,et al.  On the asymptotic behavior of solutions of certain quasilinear parabolic equations , 1984 .

[381]  E. N. Dancer The effect of domain shape on the number of positive solutions of certain nonlinear equations, II , 1990 .

[382]  Changfeng Gui,et al.  Life Span of Solutions of the Cauchy Problem for a Semilinear Heat Equation , 1995 .

[383]  M. Fila,et al.  A Fujita‐type global existence—global non‐existence theorem for a system of reaction diffusion equations with differing diffusivities , 1994 .

[384]  E. N. Dancer,et al.  Real analyticity and non-degeneracy , 2003 .

[385]  S. Cui Local and global existence of solutions to semilinear parabolic initial value problems , 2001 .

[386]  P. Clément,et al.  On a semilinear elliptic system , 1995, Differential and Integral Equations.

[387]  Mostafa Fazly Liouville theorems for the polyharmonic Henon-Lane-Emden system , 2013, 1308.0073.

[388]  A. Lacey,et al.  Global Existence for Reaction‐Diffusion Systems Modelling Ignition , 1998 .

[389]  Florin Catrina,et al.  On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions † , 2001 .

[390]  Henri Berestycki,et al.  Further qualitative properties for ellip-tic equations in unbounded domains , 1997 .

[391]  Peter A. Markowich,et al.  On Uniform Decay of the Entropy for Reaction–Diffusion Systems , 2013 .

[392]  Takashi Suzuki Semilinear parabolic equation on bounded domain with critical Sobolev exponent , 2008 .

[393]  W. Reichel,et al.  Non-Existence Results for Semilinear Cooperative Elliptic Systems via Moving Spheres , 2000 .

[394]  S. Terracini,et al.  Radial Solutions of¶Superlinear Equations on ℝN¶Part I: Global Variational Approach , 2000 .

[395]  S. Kouachi Existence of global solutions to reaction-diffusion systems via a Lyapunov functional. , 2001 .

[396]  W. Ni,et al.  On the global existence and finite time blow-up of shadow systems , 2009 .

[397]  Xuewei Yang Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs , 1998 .

[398]  J. Harada Nonsimultaneous blowup for a complex valued semilinear heat equation , 2017 .

[399]  L. Desvillettes,et al.  QUASI-STEADY-STATE APPROXIMATION FOR REACTION-DIFFUSION EQUATIONS , 2007 .

[400]  M. Pino,et al.  Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking , 1996 .

[401]  P. Laurençot,et al.  On the growth of mass for a viscous Hamilton-Jacobi equation , 2003 .

[402]  C. Mueller,et al.  Single Point Blow-up for a General Semilinear Heat Equation , 1984 .

[403]  Dieter Bothe,et al.  The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction , 2011 .

[404]  Philippe Souplet,et al.  Global solutions of inhomogeneous Hamilton-Jacobi equations , 2006 .

[405]  Q. Phan Optimal Liouville-type theorems for a parabolic system , 2014 .

[406]  Katiuscia Cerqueti A uniqueness result for a semilinear elliptic equation involving the critical Sobolev exponent in symmetric domains , 1999 .

[407]  Sadao Sugitani,et al.  On nonexistence of global solutions for some nonlinear integral equations , 1975 .

[408]  Basilis Gidas,et al.  Global and local behavior of positive solutions of nonlinear elliptic equations , 1981 .

[409]  E. Mitidieri,et al.  Fujita-type theorems for quasilinear parabolic inequalities with nonlinear gradient , 2002 .

[410]  N. Mizoguchi,et al.  Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation , 1997 .

[411]  M. Fila,et al.  Homoclinic and heteroclinic orbits for a semilinear parabolic equation , 2011 .

[412]  Philippe Souplet,et al.  Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions , 2002, Differential and Integral Equations.

[413]  Kuang-chʿang Tung,et al.  Nonlinear partial differential equations of second order , 1991 .

[414]  P. Aviles On isolated singularities in some nonlinear partial differential equations , 1983 .

[415]  R. Schoen,et al.  Refined asymptotics for constant scalar curvature metrics with isolated singularities , 1998, math/9807038.

[416]  W. Ni,et al.  The Number of Peaks of Positive Solutions of Semilinear Parabolic Equations , 1985 .

[417]  J. Morgan,et al.  Interior estimates for a class of reaction-diffusion systems from L1 a priori estimates , 1992 .

[418]  Blow up of solutions of semilinear heat equations in general domains , 2013, 1306.1417.

[419]  P. Polácik,et al.  Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. , 1996 .

[420]  P. Polácik Entire solutions and a Liouville theorem for a class of parabolic equations on the real line , 2020 .

[421]  Kung-Ching Chang,et al.  Dirichlet problem with indefinite nonlinearities , 2004 .

[422]  C. Cosner Positive solutions for superlinear elliptic systems without variational structure , 1984 .

[423]  Hatem Zaag,et al.  Optimal estimates for blowup rate and behavior for nonlinear heat equations , 1998 .

[424]  Daniel Daners,et al.  Abstract evolution equations, periodic problems and applications , 1992 .

[425]  John R. King,et al.  Grow up and slow decay in the critical Sobolev case , 2012, Networks Heterog. Media.

[426]  E. Terraneo NON-UNIQUENESS FOR A CRITICAL NON-LINEAR HEAT EQUATION , 2002 .

[427]  L. Yuxiang Optimal conditions for a priori estimates for semilinear elliptic systems with two components , 2010 .

[428]  Toru Kan,et al.  Time-dependent singularities in semilinear parabolic equations: Existence of solutions , 2017 .

[429]  A. Farina Liouville-type results for solutions of - ? u = | u | p - 1 u on unbounded domains of R N , 2005 .

[430]  P. Quittner,et al.  Entire and ancient solutions of a supercritical semilinear heat equation , 2019, Discrete & Continuous Dynamical Systems - A.

[431]  J. Serrin,et al.  Classification of positive solutions of quasilinear elliptic equations , 1994 .

[432]  Blowup versus global in time existence of solutions for nonlinear heat equations , 2017, Topological Methods in Nonlinear Analysis.

[433]  E. Yanagida,et al.  Singular backward self-similar solutions of a semilinear parabolic equation , 2010 .

[434]  D. Schmitt,et al.  Blowup in reaction-diffusion systems with dissipation of mass , 1997 .

[435]  James P. Keener,et al.  Positive solutions of convex nonlinear eigenvalue problems , 1974 .

[436]  N. Mizoguchi,et al.  Optimal condition for blow-up of the critical L norm for the semilinear heat equation , 2018, Advances in Mathematics.

[437]  Hatem Zaag,et al.  Stability of the blow-up profile for equations of the type $u_t=\Delta u+|u|^{p-1}u$ , 1997 .

[438]  A. Porretta,et al.  The profile of boundary gradient blow-up for the diffusive Hamilton-Jacobi equation , 2015, 1508.06766.

[439]  Gary M. Lieberman,et al.  The first initial-boundary value problem for quasilinear second order parabolic equations , 1986 .

[440]  M. Kirane,et al.  Global existence and large time behavior of positive solutions to a reaction diffusion system , 2000, Differential and Integral Equations.

[441]  F. Ribaud Analyse de littlewood-paley pour la resolution d'equations paraboliques semi-lineaires , 1996 .

[442]  Avner Friedman,et al.  Blowup of solutions of semilinear parabolic equations , 1988 .

[443]  Juncheng Wei,et al.  Type II Blow-up in the 5-dimensional Energy Critical Heat Equation , 2018, Acta Mathematica Sinica, English Series.

[444]  Zhong Tan GLOBAL SOLUTION AND BLOWUP OF SEMILINEAR HEAT EQUATION WITH CRITICAL SOBOLEV EXPONENT , 2001 .

[445]  Uniqueness of positive radial solutions of a semilinear Dirichlet problem in an annulus , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[446]  Zhigui Lin,et al.  Coupled diffusion systems with localized nonlinear reactions , 2001 .

[447]  E. Davies,et al.  The equivalence of certain heat kernel and Green function bounds , 1987 .

[448]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[449]  F. Weissler,et al.  The local theory for viscous Hamilton–Jacobi equations in Lebesgue spaces , 2002 .

[450]  M. Pino,et al.  Green's function and infinite-time bubbling in the critical nonlinear heat equation , 2016, Journal of the European Mathematical Society.

[451]  J. Ginibre,et al.  The Cauchy Problem in Local Spaces for the Complex Ginzburg—Landau Equation¶II. Contraction Methods , 1997 .

[452]  Y. Meyer Oscillating Patterns in Some Nonlinear Evolution Equations , 2006 .

[453]  P. Quittner Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka-Volterra systems , 2015, 1504.07031.

[454]  Pavol Quittner,et al.  Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems , 2004 .

[455]  A. Quaas,et al.  Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian , 2016 .

[456]  P. Souplet Single-point blow-up for a semilinear parabolic system , 2009 .

[457]  Kwang Ik Kim,et al.  Blowup estimates for a parabolic system in a three-species cooperating model , 2004 .

[458]  Hiroshi Matano,et al.  Immediate Regularization after Blow-up , 2005, SIAM J. Math. Anal..

[459]  A. Haraux,et al.  On a result of K. Masuda concerning reaction-diffusion equations , 1988 .

[460]  R. Turner A priori bounds for positive solutions of nonlinear elliptic equations in two variables , 1974 .

[461]  H. Zaag Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation , 2006 .

[462]  Patrizia Pucci,et al.  A general variational identity , 1986 .

[463]  R. Nussbaum,et al.  Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0 , 1985 .

[464]  Philippe Souplet,et al.  Uniform Blow-Up Profiles and Boundary Behavior for Diffusion Equations with Nonlocal Nonlinear Source , 1999 .

[465]  B. Sirakov,et al.  Uniform a priori estimates for positive solutions of the Lane–Emden equation in the plane , 2018, Calculus of Variations and Partial Differential Equations.

[466]  C. Cowan Liouville theorems for stable Lane–Emden systems and biharmonic problems , 2012, 1207.1081.

[467]  F. Weissler,et al.  Asymptotically self-similar global solutions of a general semilinear heat equation , 2001 .

[468]  R. Kersner,et al.  Local and Global Solvability of a Class of Semilinear Parabolic Equations , 1987 .

[469]  M. Jazar,et al.  Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions , 2008 .

[470]  H. Zaag,et al.  Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term , 2015, Transactions of the American Mathematical Society.

[471]  Shota Sato A singular solution with smooth initial data for a semilinear parabolic equation , 2011 .

[472]  C. Xie,et al.  Semilinear reaction-diffusion systems with nonlocal sources , 2003 .

[473]  Kazuhiro Ishige,et al.  Asymptotic behavior of solutions for some semilinear heat equations in $R^N$ , 2009 .

[474]  Masahiko Shimojo The global profile of blow-up at space infinity in semilinear heat equations , 2008 .

[475]  P. Quittner Signed solutions for a semilinear elliptic problem , 1998, Differential and Integral Equations.

[476]  Chiun-Chuan Chen,et al.  Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations , 1999 .

[477]  M. Fila,et al.  Optimal lower bound of the grow-up rate for a supercritical parabolic equation , 2006 .

[478]  P. Souplet Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth , 2018, Journal of Evolution Equations.

[479]  D. Passaseo New nonexistence results for elliptic equations with supercritical nonlinearity , 1995, Differential and Integral Equations.

[480]  H. Zaag A Liouville theorem and blowup behavior for a vector‐valued nonlinear heat equation with no gradient structure , 2001 .

[481]  Henghui Zou,et al.  A priori estimates for a semilinear elliptic system without variational structure and their applications , 2002 .

[482]  Kazuhiro Ishige,et al.  Blow-up set for a semilinear heat equation and pointedness of the initial data , 2012 .

[483]  Kazuhiro Ishige,et al.  Refined asymptotic profiles for a semilinear heat equation , 2012 .

[484]  Gao-Feng Zheng,et al.  On partial regularity of the borderline solution of semilinear parabolic problems , 2007 .

[485]  J. Cholewa,et al.  LINEAR PARABOLIC EQUATIONS IN LOCALLY UNIFORM SPACES , 2004 .

[486]  Zhengce Zhang,et al.  A NOTE ON GRADIENT BLOWUP RATE OF THE INHOMOGENEOUS HAMILTON-JACOBI EQUATIONS , 2013 .

[487]  Yuan Lou,et al.  On diffusion-induced blowups in a mutualistic model , 2001 .

[488]  Zhitao Zhang,et al.  Proof of the Hénon–Lane–Emden conjecture inR3 , 2019, Journal of Differential Equations.

[489]  Hatem Zaag,et al.  A REMARK ON THE ENERGY BLOW-UP BEHAVIOR FOR NONLINEAR HEAT EQUATIONS , 2000 .

[490]  Otared Kavian,et al.  Remarks on the large time behaviour of a nonlinear diffusion equation , 1987 .

[491]  Congming Li,et al.  Indefinite elliptic problems in a domain , 1997 .

[492]  M. Kirane,et al.  Qualitative properties of solutions to a time-space fractional evolution equation , 2012 .

[493]  Dominika Pilarczyk Asymptotic stability of singular solution to nonlinear heat equation , 2009, 0904.3759.

[494]  T. Bartsch,et al.  A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system , 2010 .

[495]  Xiaodong Yan A Liouville-type theorem for higher order elliptic systems , 2012 .

[496]  M. Yamazaki,et al.  Semilinear heat equations with distributions in Morrey spaces as initial data , 2001 .

[497]  Ryuichi Suzuki Asymptotic behavior of solutions of a semilinear heat equation with localized reaction , 2010, Advances in Differential Equations.

[498]  T. Cazenave,et al.  Sign-changing stationary solutions and blowup for the nonlinear heat equation in a ball , 2009 .

[499]  Yoshikazu Giga,et al.  Nondegeneracy of blowup for semilinear heat equations , 1989 .

[500]  P. Souplet,et al.  Single-Point Gradient Blow-up on the Boundary for Diffusive Hamilton-Jacobi Equations in Planar Domains , 2010 .

[501]  P. Laurençot Convergence to steady states for a one-dimensional viscous Hamilton-Jacobi equation with Dirichlet boundary conditions , 2007 .

[502]  A note on non-existence results for semi-linear cooperative elliptic systems via moving spheres , 2006 .

[503]  P. Quittner A PRIORI BOUNDS FOR GLOBAL SOLUTIONS OF A SEMILINEAR PARABOLIC PROBLEM , 1999 .

[504]  L. Vivier,et al.  An elliptic semilinear equation with source term involving boundary measures: the subcritical case , 2000 .

[505]  C. Xie,et al.  Blow-up for semilinear parabolic equations with nonlinear memory , 2004 .

[506]  John M. Danskin,et al.  Approximation of functions of several variables and imbedding theorems , 1975 .

[507]  A. Lacey,et al.  Global existence and convergence to a singular steady state for a semilinear heat equation , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[508]  E. Yanagida,et al.  Convergence rate to singular steady states in a semilinear parabolic equation , 2016 .

[509]  Yihong Du,et al.  Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations , 2005, Advances in Differential Equations.

[510]  J. Serrin,et al.  Non-existence of positive solutions of Lane-Emden systems , 1996, Differential and Integral Equations.

[511]  M. Chipot,et al.  Equilibria, Connecting Orbits and a Priori Bounds for Semilinear Parabolic Equations with Nonlinear Boundary Conditions , 2004 .

[512]  Jong-Shenq Guo,et al.  Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up , 2005 .

[513]  C. Budd,et al.  Semilinear elliptic equations and supercritical growth , 1987 .

[514]  A remark on global existence of solutions of shadow systems , 2012 .

[515]  Hatem Hajlaoui,et al.  Liouville theorems for stable solutions of the weighted Lane-Emden system , 2015, 1511.06736.

[516]  P. Quittner,et al.  On the multiplicity of self-similar solutions of the semilinear heat equation , 2019, Nonlinear Analysis.

[517]  Philippe Souplet,et al.  Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices , 2012, Networks Heterog. Media.

[518]  Mingxin Wang,et al.  Properties of blow-up solutions to a parabolic system with nonlinear localized terms , 2005 .

[519]  J. Velázquez Higher dimensional blow up for semilinear parabolic equations , 1992 .

[520]  F. Weissler,et al.  Self-Similar Subsolutions and Blowup for Nonlinear Parabolic Equations , 1997 .

[521]  Victor A. Galaktionov,et al.  Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications , 2004 .

[522]  Haim Brezis,et al.  A nonlinear heat equation with singular initial data , 1996 .

[523]  N. Mizoguchi Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition , 2003 .

[524]  A Priori Bounds for Positive Solutions of a Non-variational Elliptic System , 2001 .

[525]  Yuxiang Li Optimal conditions for L∞-regularity and a priori estimates for semilinear elliptic systems , 2009 .

[526]  E. N. Dancer Some notes on the method of moving planes , 1992, Bulletin of the Australian Mathematical Society.

[527]  F. Pacard,et al.  Boundary singularities for weak solutions of semilinear elliptic problems. J. Funct. Anal. , 2007, math/0702247.

[528]  J. Velázquez,et al.  Estimates on the (n−1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation , 1992 .

[529]  P. Souplet,et al.  A priori Estimates and Existence for Elliptic Systems via Bootstrap in Weighted Lebesgue Spaces , 2004 .

[530]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[531]  D. H. SAIqOER On Global Solution of Nonlinear Hyperbolic Equations , 2004 .

[532]  M. Fila,et al.  NONCONSTANT SELFSIMILAR BLOW-UP PROFILE FOR THE EXPONENTIAL REACTION-DIFFUSION EQUATION , 2008 .

[533]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[534]  P. Souplet,et al.  Optimal Liouville-type Theorems for Noncooperative Elliptic Schrödinger Systems and Applications , 2012 .

[535]  Christopher P. Grant,et al.  Asymptotics of blowup for a convection-diffusion equation with conservation , 1996, Differential and Integral Equations.

[536]  Juncheng Wei,et al.  Sign-changing blowing-up solutions for the critical nonlinear heat equation , 2018, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[537]  Pavol Quittner,et al.  Symmetry of Components for Semilinear Elliptic Systems , 2012, SIAM J. Math. Anal..

[538]  C. Budd,et al.  Global blow-up for a semilinear heat equation on a subspace , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[539]  P. Quittner Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure , 2014, 1409.4960.

[540]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[541]  K. Fellner,et al.  Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition , 2016, 1601.05992.

[542]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[543]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[544]  Andrew Alfred Lacey,et al.  Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition , 1988 .

[545]  G. Simonett,et al.  H1-CALCULUS FOR ELLIPTIC OPERATORS WITH NONSMOOTH COEFFICIENTS* , 2013 .

[546]  L. D’Ambrosio A new critical curve for a class of quasilinear elliptic systems , 2012, 1209.1901.

[547]  J. Dolbeault,et al.  Geometry of phase space and solutions of semilinear elliptic equations in a ball , 2007 .

[548]  W. Ni CHAPTER 3 - Qualitative Properties of Solutions to Elliptic Problems , 2004 .

[549]  Victor A. Galaktionov,et al.  Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation , 1993 .

[550]  M. Fila,et al.  Continuation beyond interior gradient blow-up in a semilinear parabolic equation , 2019, Mathematische Annalen.

[551]  Kazuhiro Ishige,et al.  Blow-up set for type I blowing up solutions for a semilinear heat equation , 2014 .

[552]  Brian Straughan,et al.  Explosive Instabilities in Mechanics , 1998 .

[553]  Noriaki Umeda,et al.  Blow-Up at Space Infinity for Solutions of Cooperative Reaction-Diffusion Systems , 2011 .

[554]  N. Mizoguchi Blow-up rate of type II and the braid group theory , 2011 .

[555]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[556]  Marek Fila,et al.  Derivative blow-up and beyond for quasilinear parabolic equations , 1994, Differential and Integral Equations.

[557]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[558]  M. Struwe,et al.  An Analytic Framework for the supercritical Lane Emden Equation and its Gradient Flow , 2014 .

[559]  F. Merle,et al.  On Nonexistence of type II blowup for a supercritical nonlinear heat equation , 2004 .

[560]  T. Kaczynski,et al.  On differential systems with strongly indefinite variational structure , 2014, 1403.0158.

[561]  M. Ramos,et al.  Superlinear Indefinite Elliptic Problems and Pohoz′aev Type Identities , 1998 .

[562]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[563]  P. Quittner Blow-up for semilinear parabolic equations with a gradient term , 1991 .

[564]  S. Filippas,et al.  On the blowup of multidimensional semilinear heat equations , 1993 .

[565]  L. M. Hocking,et al.  A nonlinear instability burst in plane parallel flow , 1972, Journal of Fluid Mechanics.

[566]  Diffusion Terms in Systems of Reaction Diffusion Equations Can Lead to Blow Up , 1998 .

[567]  F. Merle,et al.  Stability of ODE blow-up for the energy critical semilinear heat equation , 2017 .

[568]  P. Quittner Threshold and strong threshold solutions of a semilinear parabolic equation , 2016, Advances in Differential Equations.

[569]  B. Gidas Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations , 1980 .

[570]  Mingxin Wang,et al.  Properties of Positive Solutions for Non‐local Reaction–Diffusion Problems , 1996 .

[571]  P. Lions Isolated singularities in semilinear problems , 1980 .

[572]  Enrico Valdinoci,et al.  Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems , 2010 .

[573]  Jan Prüss,et al.  Imaginary powers of elliptic second order differential operators in $L\sp p$-spaces , 1993 .

[574]  Christian Stinner,et al.  The convergence rate for a semilinear parabolic equation with a critical exponent , 2011, Appl. Math. Lett..

[575]  D. Fortunato,et al.  Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[576]  N. Mizoguchi,et al.  Positive unstable periodic solutions for superlinear parabolic equations , 1995 .

[577]  Laurent Desvillettes,et al.  Global Existence for Quadratic Systems of Reaction-Diffusion , 2007 .

[578]  Mohamed Ali Jendoubi,et al.  A Simple Unified Approach to Some Convergence Theorems of L. Simon , 1998 .

[579]  H. Giacomini,et al.  A new dynamical approach of Emden-Fowler equations and systems , 2010, Advances in Differential Equations.

[580]  Robert H. Martin,et al.  Global existence and boundedness in reaction-diffusion systems , 1987 .

[581]  Bianchi Gabriele,et al.  Non—existence of positive solutions to semilinear elliptic equations on r” or r” through the method of moving planes , 1997 .

[582]  Q. Phan Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems , 2011, Advances in Differential Equations.

[583]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[584]  Filippo Gazzola,et al.  Existence of ground states and free boundary problems for quasilinear elliptic operators , 2000, Advances in Differential Equations.

[585]  Tadashi Kawanago,et al.  Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity , 1996 .

[586]  S. Benachour,et al.  Global classical solutions for reaction–diffusion systems with nonlinearities of exponential growth , 2010 .

[587]  P. Souplet,et al.  Parabolic Liouville-type theorems via their elliptic counterparts , 2011 .

[588]  T. Goudon,et al.  Regularity analysis for systems of reaction-diffusion equations , 2010 .

[589]  Meijun Zhu,et al.  Uniqueness theorems through the method of moving spheres , 1995 .

[590]  S. Kaplan On the Growth of Solutions of Quasi-Linear Parabolic Equations , 2019 .

[591]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[592]  F. Weissler,et al.  REGULAR SELF-SIMILAR SOLUTIONS OF THE NONLINEAR HEAT EQUATION WITH INITIAL DATA ABOVE THE SINGULAR STEADY STATE , 2003 .

[593]  P. Felmer,et al.  A Liouville-Type Theorem for Elliptic Systems , 1994 .

[594]  Philippe Souplet,et al.  Recent results and open problems on parabolic equations with gradient nonlinearities. , 2001 .

[595]  M. Fila,et al.  Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed , 2008 .

[596]  Zheng-chao Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent , 1991 .

[597]  Tosio Kato Strong solutions of the Navier-Stokes equation in Morrey spaces , 1992 .

[598]  S. Benachour,et al.  Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations , 2004, 0704.1207.

[599]  Local behavior and global existence of positive solutions of auλ⩽−Δu⩽uλ , 2002 .

[600]  N. Mizoguchi Various behaviors of solutions for a semilinear heat equation after blowup , 2005 .

[601]  L. Dupaigne Stable Solutions of Elliptic Partial Differential Equations , 2011 .

[602]  P. Lions Asymptotic behavior of some nonlinear heat equations , 1982 .

[603]  Bei Hu,et al.  Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition , 1996, Differential and Integral Equations.

[604]  L. Peletier,et al.  Nodal solutions of elliptic equations with critical Sobolev exponents , 1990 .

[605]  S. Angenent,et al.  A priori bounds and renormalized Morse indices of solutions of an elliptic system , 2000 .

[606]  Michael E. Taylor,et al.  Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations , 1992 .

[607]  Qi S. Zhang A priori estimates and the representation formula for all positive solutions to a semilinear parabolic problem , 1999 .

[608]  Xuefeng Wang,et al.  Further study on a nonlinear heat equation , 2001 .

[609]  Yi Li,et al.  Asymptotic behavior of positive solutions of equation Δu + K(x) up = 0 in Rn , 1992 .

[610]  E. Yanagida Uniqueness of Rapidly Decaying Solutions to the Haraux–Weissler Equation , 1996 .

[611]  Philippe Souplet Decay of Heat Semigroups in L∞ and Applications to Nonlinear Parabolic Problems in Unbounded Domains☆ , 2000 .

[612]  Cecilia S. Yarur,et al.  Semilinear elliptic equations and systems with measure data: existence and a priori estimates , 2002, Advances in Differential Equations.

[613]  R. Fowler FURTHER STUDIES OF EMDEN'S AND SIMILAR DIFFERENTIAL EQUATIONS , 1931 .

[614]  A. Friedman,et al.  Blow-up of positive solutions of semilinear heat equations , 1985 .

[615]  A. Bahri Topological results on a certain class of functionals and application , 1981 .

[616]  Yukihiro Seki Type II blow-up mechanisms in a semilinear heat equation with critical Joseph–Lundgren exponent , 2018, Journal of Functional Analysis.

[617]  F. Weissler Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation , 1986 .

[618]  Jinhuan Wang,et al.  Total versus single point blow-up in heat equations with coupled localized sources , 2007, Asymptot. Anal..

[619]  John M. Ball,et al.  REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS , 1977 .

[620]  A. Lacey,et al.  Global existence and divergence of critical solutions of a non-local parabolic problem in Ohmic heating process , 2004 .

[621]  M. Fila,et al.  Convergence Rate for a Parabolic Equation with Supercritical Nonlinearity , 2005 .

[622]  Y. Naito An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[623]  P. Lions,et al.  Morse index of some min-max critical points , 1988 .

[624]  Laurent Desvillettes,et al.  Improved Duality Estimates and Applications to Reaction-Diffusion Equations , 2013, 1304.4040.

[625]  Complex time blow-up of the nonlinear heat equation , 2018, 1812.10707.

[626]  Philippe Souplet,et al.  A Simplified Approach to the Refined Blowup Behavior for the Nonlinear Heat Equation , 2019, SIAM J. Math. Anal..

[627]  F. Pacard Partial regularity for weak solutions of a nonlinear elliptic equation , 1993 .

[628]  R. Hamilton Matrix Harnack estimate for the heat equation , 1993 .

[629]  B. Sirakov,et al.  Nonexistence of Positive Supersolutions of Elliptic Equations via the Maximum Principle , 2010, 1005.4885.

[630]  G. Caristi,et al.  Blow-Up Estimates of Positive Solutions of a Parabolic System , 1994 .

[631]  A. Lacey Mathematical Analysis of Thermal Runaway for Spatially Inhomogeneous Reactions , 1983 .

[632]  J. Dolbeault,et al.  Classification of the Solutions of Semilinear Elliptic Problems in a Ball , 2000 .

[633]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[634]  Zhengfang Zhou,et al.  No Local L 1Solution for a Nonlinear Heat Equation , 2003 .

[635]  Hiroki Yagisita,et al.  Blow-up problems for a semilinear heat equation with large diffusion , 2005 .

[636]  Kazuhiro Ishige,et al.  Blow-up set of type I blowing up solutions for nonlinear parabolic systems , 2017 .

[637]  V. A. Galaktionov,et al.  The space structure near a blow-up point for semilinear heat equations: a formal approach , 1992 .

[638]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[639]  P. Souplet,et al.  Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena , 2004 .

[640]  P. Rabinowitz Some aspects of nonlinear eigenvalue problems , 1973 .

[641]  Alberto Farina,et al.  On the classification of solutions of the Lane-Emden equation on unbounded domains of Rn , 2007 .

[642]  Jean-Philippe Bartier,et al.  Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains , 2006, Asymptot. Anal..

[643]  Xuefeng Wang,et al.  On the Cauchy problem for reaction-diffusion equations , 1993 .

[644]  Matania Ben-Artzi,et al.  Global existence and decay for viscous Hamilton-Jacobi equations , 1998 .

[645]  Chunxiao Yang,et al.  The second critical exponent for a semilinear nonlocal parabolic equation , 2014 .

[646]  J. J. L. Velázquez,et al.  Classification of singularities for blowing up solutions in higher dimensions , 1993 .

[647]  Y. Giga,et al.  Blow up rate for semilinear heat equation with subcritical nonlinearity , 2002 .

[648]  F. Dickstein,et al.  Sign-changing stationary solutions and blowup for a nonlinear heat equation in dimension two , 2013, 1304.2571.

[649]  Pierre-Louis Lions,et al.  A Priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations , 1982 .

[650]  Paul G. Talaga,et al.  Single-point blowup for nonlocal parabolic problems , 1999 .

[651]  H. Amann,et al.  Semilinear parabolic equations involving measures and low regularity data , 2003 .

[652]  Nader Masmoudi,et al.  Blow-up profile for the complex Ginzburg–Landau equation , 2008 .

[653]  P. Quittner A priori estimates, existence and Liouville theorems for semilinear elliptic systems with power nonlinearities , 2014 .

[654]  J. Matos Unfocused blow up solutions of semilinear parabolic equations , 1999 .

[655]  Single-point blow-up for a multi-component reaction-diffusion system , 2017 .

[656]  Tomasz Dłotko Examples of Parabolic Problems with Blowing-Up Derivatives , 1991 .

[657]  Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolicequation , 2011 .

[658]  M. Fila,et al.  Slow convergence to zero for a parabolic equation with a supercritical nonlinearity , 2007 .

[659]  F. Merle,et al.  On strongly anisotropic type II blow up , 2017, 1709.04941.

[660]  J. Rossi,et al.  Coexistence of simultaneous and nonsimultaneous blow-up in a semilinear parabolic system , 2005, Differential and Integral Equations.

[661]  N. Mizoguchi Multiple blowup of solutions for a semilinear heat equation II , 2006 .

[662]  Andrew M. Stuart,et al.  Blowup in a Partial Differential Equation with Conserved First Integral , 1993, SIAM J. Appl. Math..

[663]  Li Chen,et al.  Global existence and asymptotic behavior of solutions to a nonlocal Fisher-KPP type problem , 2015, 1508.00063.

[664]  Hans F. Weinberger An Example of Blowup Produced by Equal Diffusions , 1999 .

[665]  Uniqueness of Positive Radial Solutions of the Dirichlet Problems −Δu=up±uqin an Annulus , 1997 .

[666]  T. Bartsch,et al.  Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations , 2011 .

[667]  Jack K. Hale,et al.  Convergence in gradient-like systems with applications to PDE , 1992 .

[668]  E. Yanagida,et al.  Global unbounded solutions of the Fujita equation in the intermediate range , 2014 .

[669]  E. Yanagida,et al.  Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation , 2004, Differential and Integral Equations.

[670]  Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems , 2013, 1307.6949.

[671]  Matthias Winter,et al.  Mathematical Aspects of Pattern Formation in Biological Systems , 2013 .

[672]  Herbert Amann,et al.  Invariant Sets and Existence Theorems for Semilinear Parabolic and Elliptic Systems , 1978 .

[673]  P. Souplet The Influence of Gradient Perturbations on Blow-up Asymptotics in Semilinear Parabolic Problems: A Survey , 2005 .

[674]  P. Souplet,et al.  Optimal condition for non-simultaneous blow-up in a reaction-diffusion system , 2004 .

[675]  Kantaro Hayakawa,et al.  On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations , 1973 .

[676]  Guocai Cai On the heat flow for the two-dimensional Gelfand equation , 2008 .

[677]  R. Sperb Growth estimates in diffusion-reaction problems , 1981 .

[678]  Alberto Bressan,et al.  Total Blow-Up versus Single Point Blow-Up , 1988 .

[679]  F. Merle Solution of a nonlinear heat equation with arbitrarily given blow-up points , 1992 .

[680]  J. Vázquez,et al.  Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems , 2005 .

[681]  M. Fila Boundedness of Global Solutions of Nonlinear Diffusion Equations , 1992 .

[682]  Chang-Shou Lin,et al.  A classification of solutions of a conformally invariant fourth order equation in Rn , 1998 .

[683]  M. Bidaut-Véron Initial Blow-up for the Solutions of a Semilinear Parabolic Equation with Source Term , 2006 .

[684]  M. Struwe,et al.  Boundary regularity for the supercritical Lane-Emden heat flow , 2015 .

[685]  Lambertus A. Peletier,et al.  Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation , 1992, Differential and Integral Equations.

[686]  P. Souplet A remark on the large time behavior of solutions of viscous Hamilton-Jacobi equations , 2007 .

[687]  Peter Polácik,et al.  Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation , 2008, Asymptot. Anal..

[688]  A. Porretta,et al.  Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation , 2018, Journal de Mathématiques Pures et Appliquées.

[689]  M. Kirane,et al.  Global Solutions of Reaction–Diffusion Systems with a Balance Law and Nonlinearities of Exponential Growth , 2000 .

[690]  E. Yanagida,et al.  Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity , 2008 .

[691]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[692]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[693]  P. Souplet,et al.  Gradient bounds for solutions of semilinear parabolic equations without Bernstein's quadratic condition , 2004 .

[694]  P. Quittner,et al.  Complete and energy blow-up in parabolic problems with nonlinear boundary conditions , 2005 .

[695]  Michael G. Crandall,et al.  Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems , 1975 .

[696]  Infinitely Many Solutions for a Class of Semilinear Elliptic Equations in R N ( * ) , 2012 .

[697]  A. Abebe Positive solutions of nonlinear elliptic boundary value problems , 2014 .

[698]  M. Escobedo,et al.  On the blow-up of solutions of a convective reaction diffusion equation , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[699]  Juncheng Wei,et al.  Geometry driven type II higher dimensional blow-up for the critical heat equation , 2017, Journal of Functional Analysis.

[700]  V. Galaktionov,et al.  Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations , 2014 .

[701]  G. Wolansky A critical parabolic estimate and application to nonlocal equations arising in chemotaxis , 1997 .

[702]  M. Fila,et al.  Grow-up rate of solutions for a supercritical semilinear diffusion equation , 2004 .

[703]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[704]  J.-P. Puel,et al.  Quelques résultats sur le problème-Δu=λeu , 1988 .

[705]  S. Taliaferro Isolated singularities of nonlinear parabolic inequalities , 2007 .

[706]  Pavol Quittner,et al.  The Blow-Up Rate for a Semilinear Parabolic System , 1999 .

[707]  James Serrin,et al.  Gradient Estimates for Solutions of Nonlinear Elliptic and Parabolic Equations , 1971 .

[708]  M. Fila,et al.  Linear behaviour of solutions of a superlinear heat equation , 2008 .

[709]  Hatem Zaag,et al.  Blow-up results for vector-valued nonlinear heat equations with no gradient structure , 1998 .

[710]  J. Tello Stability of steady states of the Cauchy problem for the exponential reaction-diffusion equation , 2006 .

[711]  L. Nirenberg,et al.  Superlinear indefinite elliptic problems and nonlinear Liouville theorems , 1994 .

[712]  Charles Collot Nonradial type II blow up for the energy-supercritical semilinear heat equation , 2016, 1604.02856.

[713]  Influence of mixed boundary conditions in some reaction–diffusion systems , 1997 .

[714]  A. R. Bernal,et al.  Non well posedness of parabolic equations with supercritical nonlinearities , 2004 .

[715]  Liouville theorems and 1-dimensional symmetry for solutions of an elliptic system modelling phase separation , 2014, 1404.7288.

[716]  M. Ayed,et al.  Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three , 2006 .

[717]  T. Cazenave,et al.  Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations , 1998 .

[718]  M. A. Herrero,et al.  Flat blow-up in one-dimensional semilinear heat equations , 1992, Differential and Integral Equations.

[719]  W. Ni Uniqueness of solutions of nonlinear Dirichlet problems , 1983 .

[720]  P. Souplet Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory , 2004 .

[721]  Ryo Ikehata,et al.  Stable and unstable sets for evolution equations of parabolic and hyperbolic type , 1996 .

[722]  M. Fila,et al.  Multiple continuation beyond blow-up , 2007, Differential and Integral Equations.

[723]  J. Matos Convergence of blow-up solutions of nonlinear heat equations in the supercritical case , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[724]  Plane structures in thermal runaway , 1993 .

[725]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[726]  M. Tang Uniqueness of positive radial solutions for Δu−u+up=0 on an annulus , 2003 .

[727]  Juncheng Wei,et al.  A Monotonicity Formula and a Liouville-type Theorem for a Fourth Order Supercritical Problem , 2013, 1303.6059.

[728]  M. Pierre,et al.  Asymptotic behavior of solutions to chemical reaction-diffusion systems , 2017 .

[729]  P. Lions,et al.  Solutions globales d'équations de la chaleur semi linéaires , 1984 .

[730]  S. Solimini,et al.  Some existence results for superlinear elliptic boundary value problems involving critical exponents , 1986 .

[731]  P. Brunovský,et al.  Convergence in general periodic parabolic equations in one space dimension , 1992 .

[732]  Rushun Tian,et al.  Bifurcations for a coupled Schrödinger system with multiple components , 2014, 1408.4613.

[733]  P. Rouchon Universal bounds for global solutions of a diffusion equation with a mixed local-nonlocal reaction term. , 2006 .

[734]  J. Prüss On semilinear evolution equations in Banach spaces. , 1978 .

[735]  M. Fila,et al.  On the Boundedness of Global Solutions of Abstract Semilinear Parabolic Equations , 1997 .

[736]  Kazuhiro Ishige,et al.  Supersolutions for a class of nonlinear parabolic systems , 2015, 1510.07838.

[737]  J. Serrin,et al.  Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities , 2002 .