Supervised Bipartite Graph Inference

We formulate the problem of bipartite graph inference as a supervised learning problem, and propose a new method to solve it from the viewpoint of distance metric learning. The method involves the learning of two mappings of the heterogeneous objects to a unified Euclidean space representing the network topology of the bipartite graph, where the graph is easy to infer. The algorithm can be formulated as an optimization problem in a reproducing kernel Hilbert space. We report encouraging results on the problem of compound-protein interaction network reconstruction from chemical structure data and genomic sequence data.

[1]  M. Greenacre Theory of Correspondence Analysis , 2007 .

[2]  Tatsuya Akutsu,et al.  Protein homology detection using string alignment kernels , 2004, Bioinform..

[3]  M. Kanehisa,et al.  Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. , 2003, Journal of the American Chemical Society.

[4]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[5]  Gal Chechik,et al.  Euclidean Embedding of Co-occurrence Data , 2004, J. Mach. Learn. Res..

[6]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[7]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[8]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[9]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[10]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[11]  Tsuyoshi Kato,et al.  Selective integration of multiple biological data for supervised network inference , 2005, Bioinform..

[12]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[13]  C. Dobson Chemical space and biology , 2004, Nature.

[14]  Yoshihiro Yamanishi,et al.  Supervised Graph Inference , 2004, NIPS.

[15]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[16]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[17]  Yoshihiro Yamanishi,et al.  Protein network inference from multiple genomic data: a supervised approach , 2004, ISMB/ECCB.

[18]  Shotaro Akaho,et al.  A kernel method for canonical correlation analysis , 2006, ArXiv.