Modelling dications in the diurnal ionosphere of Venus

Context. Previous studies have shown that doubly-charged positive ions, including molecular ions, can have detectable densities in the ionospheres of Mars, Titan, and the Earth. Aims. In the present paper, we continue our approach by modelling the Venusian ionosphere. The neutral atmosphere of Venus has a similar composition to the ones encountered in the other terrestrial planets, with carbon dioxide (as on Mars), nitrogen (as on Earth and Titan), and atomic oxygen (as on Earth). Methods. We computed the doubly-charged positive ion production through photoionisation (primary production) and electron impact ionisation (secondary production). We computed the densities under the photochemical equilibrium assumption. Results. We predict a ${\rm CO_2}^{++}$ layer centred around $140~{\rm km}$ altitude with a density reaching 30 dications per ${\rm cm}^{3}$ in active solar conditions and a ${\rm N_2}^{++}$ layer centred around a $140{-}150~{\rm km}$ altitude with density reaching $0.3~{\rm cm}^{-3}$. We find good agreement between the modelled ${\rm O}^{++}$ densities and Pioneer Venus Orbiter measurements. Finally, we investigate the problem of possible detection of these ions by the European spacecraft Venus Express. Conclusions. Although molecular doubly-charged positive ion densities are low, these ions cannot be considered as negligible compared to other minor ion species. Their detection should be possible in the future through remote sensing or in-situ methods including ion mass spectrometry and UV spectroscopy.

[1]  O. Witasse,et al.  Outstanding aeronomy problems at Venus , 2006 .

[2]  W. Kent Tobiska,et al.  Revised solar extreme ultraviolet flux model , 1991 .

[3]  Kimura,et al.  Electron capture in collisions of O2+(3P) ions with He atoms at energies below 10 keV: The effect of metastable O2+(1D) ions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  A. Ehresmann,et al.  Double photoionization of N2 into the N22+ D 1Σu+-state , 2003 .

[5]  Roland Thissen,et al.  Internal energy effects in the reactivity of CO22+ doubly charged molecular ions with CO2 and CO , 2003 .

[6]  E. C. Zipf The ionization of atomic oxygen by electron impact. [applicable to inelastic processes in thermosphere] , 1985 .

[7]  R. Daniell,et al.  Global observations of the composition and dynamics of the ionosphere of Venus - Implications for the solar wind interaction , 1980 .

[8]  M. Larsson,et al.  Experimental and theoretical studies of the radiative properties of the N2+2 D 1Σ+u state , 1988 .

[9]  P. Blelly,et al.  The TEC and F2 parameters as tracers of the ionosphere and thermosphere , 2002 .

[10]  Y. Itikawa,et al.  Cross Sections for Collisions of Electrons and Photons with Atomic Oxygen , 1990 .

[11]  D. Mathur Structure and dynamics of molecules in high charge states , 2004 .

[12]  L. H. Andersen,et al.  Dissociative recombination of the cation and dication of CO 2 , 2003 .

[13]  M. Torr,et al.  Chemistry of the thermosphere and ionosphere , 1979 .

[14]  O. Dutuit,et al.  A state-selected study of Ar+(2P32,12) O2 charge transfer at collision energies below 4 eV using synchrotron radiation and guided beam techniques , 1996 .

[15]  S. Singer,et al.  Thermal diffusion and multiply-charged atoms in the magnetosphere. , 2007 .

[16]  Masuoka Single- and double-photoionization cross sections of carbon dioxide (CO2) and ionic fragmentation of CO2+ and CO22+ , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  F. Launay,et al.  The vacuum uv emission spectrum of the 15N22+ molecular ion , 1985 .

[18]  C. Zeippen,et al.  The photoionisation of the O+(4So) ground state , 1988 .

[19]  D. Torr,et al.  Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations , 1992 .

[20]  D. Bedo,et al.  The EUV spectrophotometer on Atmosphere Explorer. , 1973 .

[21]  L. H. Andersen,et al.  Dissociative recombination of dications , 2003 .

[22]  R. L. Brooks,et al.  Absolute, State-selective Measurements of the Photoionization Cross Sections of N+ and O+ Ions , 2002 .

[23]  S. Hałas,et al.  Cross sections for the production of N2+, N+ and N22+ from nitrogen by electrons in the energy range 16–600 eV , 1972 .

[24]  J. Bozek,et al.  Absolute Photoionization Cross Section Measurements of O II Ions from 29.7 to 46.2 eV , 2003 .

[25]  Paul G. Richards,et al.  Correction to “EUVAC: A Solar EUV Flux Model for aeronomic calculations” , 1994 .

[26]  O. Witasse,et al.  Prediction of a CO22+ layer in the atmosphere of Mars , 2002 .

[27]  F. G. Eparvier,et al.  Euv97: Improvements to Euv Irradiance Modeling in the Soft X-Rays and FUV , 1998 .

[28]  R. Johnsen,et al.  Measurements of the reaction rates of O++ ions with N2 and O2 at thermal energy and their ionospheric implications , 1978 .

[29]  Samson Proportionality of electron-impact ionization to double photoionization. , 1990, Physical review letters.

[30]  T. Märk Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV , 1975 .

[31]  E. Krishnakumar,et al.  Cross sections for the production of N2(+), N(+) + N2(2+) and N(2+) by electron impact on N2 , 1990 .

[32]  Wayne T. Kasprzak,et al.  Global empirical model of the Venus thermosphere , 1983 .

[33]  O. Witasse,et al.  Prediction and modelling of doubly-charged ions in the Earth's upper atmosphere , 2005 .

[34]  Jane L. Fox,et al.  Solar activity variations of the Venus thermosphere/ionosphere , 2001 .

[35]  I. Yamada,et al.  Electron Impact Ionization of O+, S+ and S2+ Ions , 1988 .

[36]  M. Torr,et al.  Ionization frequencies for solar cycle 21: Revised , 1985 .

[37]  A. Harker,et al.  A kinetic study of the mercury sensitized luminescence of H2O and NH3 , 1975 .

[38]  Carl P. Simon,et al.  Prediction of a N2++ layer in the upper atmosphere of Titan , 2005 .

[39]  W. Kent Tobiska,et al.  Recent solar extreme ultraviolet irradiance observations and modeling: A review , 1993 .

[40]  J. Barriot,et al.  Radio science investigations by VeRa onboard the Venus Express spacecraft , 2006 .

[41]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of CH_4, H_2O, and D_2O from threshold to 1000 eV. , 1996 .

[42]  R. Hartle,et al.  Hydrogen and deuterium in the thermosphere of Venus: Solar cycle variations and escape , 1996 .

[43]  L. H. Andersen,et al.  Long-lived, doubly charged diatomic and triatomic molecular ions , 1995 .

[44]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of H2O and D2O from threshold to 1000 eV , 1998 .

[45]  K. A. Smith,et al.  Double ionization of atomic oxygen by electron impact , 1982 .

[46]  C. Vidal,et al.  Electron impact dissociative ionization of CO2: Measurements with a focusing time-of-flight mass spectrometer , 1998 .

[47]  J. Fox,et al.  O++ in the Venusian ionosphere , 1981 .