Eliminating dual spaces

Macaulay dual spaces provide a local description of an affine scheme and give rise to computational machinery that is compatible with the methods of numerical algebraic geometry. We introduce eliminating dual spaces, use them for computing dual spaces of quotient ideals, and develop an algorithm for detection of embedded points on an algebraic curve.

[1]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[2]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[3]  Jonathan D. Hauenstein,et al.  Numerical Computation of the Hilbert Function and Regularity of a Zero Dimensional Scheme , 2014 .

[4]  Anton Leykin Numerical primary decomposition , 2008, ISSAC '08.

[5]  Jonathan D. Hauenstein,et al.  A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations , 2009, SIAM J. Numer. Anal..

[6]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[7]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[8]  Jonathan D. Hauenstein,et al.  Numerical computation of the Hilbert function of a zero-scheme , 2011 .

[9]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[10]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[11]  Anton Leykin,et al.  Numerical algorithms for detecting embedded components , 2014, J. Symb. Comput..

[12]  Robert Krone,et al.  Numerical Algorithms for Dual Bases of Positive-Dimensional Ideals , 2012, 1201.2242.

[13]  Jonathan D. Hauenstein,et al.  Isosingular Sets and Deflation , 2013, Found. Comput. Math..

[14]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[16]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[17]  B. Mourrain Isolated points, duality and residues , 1997 .

[18]  J. Hauenstein Algebraic computations using Macaulay dual spaces , 2011 .

[19]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[20]  Maria Grazia Marinari,et al.  ON MULTIPLICITIES IN POLYNOMIAL SYSTEM SOLVING , 1996 .