High hole mobility in boron doped diamond for power device applications

Low boron doped homoepitaxial diamond layers were grown on Ib (100) diamond substrates with oxygen added to the gas mixture. The acceptor density of the samples has been estimated by C(V) and Hall effect to lie close to 1016 cm−3 with a maximum low field Hall mobility value of 1870 cm2/V s at 292 K. The presence of oxygen in the gas phase is shown to be a key parameter to obtain such characteristics. The mobility parameters required to simulate the electrical behavior of devices between 300 K and 500 K are then determined for a wide doping range.

[1]  David C. Look,et al.  Electrical Characterization of GaAs Materials and Devices , 1989 .

[2]  Sylvie Contreras,et al.  Electrical transport properties of aluminum-implanted 4H–SiC , 2005 .

[3]  Takashi Shinohe,et al.  Parameters required to simulate electric characteristics of SiC devices for n-type 4H-SiC , 2004 .

[4]  R. Locher,et al.  The diamond Irvin curve , 1997 .

[5]  M. Cardona,et al.  Linear muffin-tin-orbital and k.p calculations of effective masses and band structure of semiconducting diamond , 1994 .

[6]  S. J. Rashid,et al.  Modelling of single-crystal diamond Schottky diodes for high-voltage applications , 2006 .

[7]  D. Twitchen,et al.  Compensation in boron‐doped CVD diamond , 2008 .

[8]  F. Omnès,et al.  Technology and electrical properties of ohmic contacts and schottky diodes on homoepitaxial layers grown on (100) diamond surfaces , 2006 .

[9]  H. Okushi,et al.  High-Quality B-Doped Homoepitaxial Diamond Films using Trimethylboron , 1998 .

[10]  M. Wade,et al.  Effect of oxygen on the cathodoluminescence signal from excitons, impurities and structural defects in homoepitaxial (100) diamond films , 2005 .

[11]  F. Omnès,et al.  Effect of ECR etching conditions of (100)Ib diamond substrates on homoepitaxial low boron doped diamond layer quality , 2008 .

[12]  M. Katagiri,et al.  Hall electron mobility in diamond , 2006 .

[13]  Tsuyohito Ito,et al.  Highly efficient doping of boron into high-quality homoepitaxial diamond films , 2006 .

[14]  H. Okushi,et al.  Hall Mobility and Scattering Mechanism of Holes in Boron-Doped Homoepitaxial Chemical Vapor Deposition Diamond Thin Films , 2006 .

[15]  K. Haenen,et al.  Characterization of boron doped diamond epilayers grown in a NIRIM type reactor , 2008 .

[16]  K. Thonke The boron acceptor in diamond , 2003 .

[17]  Z. Remeš,et al.  Amplitude modulated step scan Fourier transform photocurrent spectroscopy of partly compensated B‐doped CVD diamond thin films , 2007 .

[18]  S. Koizumi,et al.  Electron mobility in phosphorous doped {111} homoepitaxial diamond , 2008 .