Metal hydride hydrogen compressors: A review

Abstract Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

[1]  George M. Lloyd,et al.  Performance of high power metal hydride reactors , 1998 .

[2]  R. Černý,et al.  Hydrogen cycling induced diffraction peak broadening in C14 and C15 Laves phases , 2005 .

[3]  M. Groll,et al.  Heat transfer characteristics of expanded graphite matrices in metal hydride beds , 2004 .

[4]  K. Yang,et al.  Effect of hydrogen absorption/desorption cycling on hydrogen storage performance of LaNi4.25Al0.75 , 2008 .

[5]  T. Motyka The Replacement Tritium Facility , 1992 .

[6]  Choong-Nyeon Park,et al.  Analysis of sloping plateaux in alloys and intermetallic hydrides: II. Real systems , 2004 .

[7]  J. Goyette,et al.  Hydride alloys properties investigations for hydrogen sorption compressor , 2005 .

[8]  J. Lynch,et al.  Lattice Parameter Variation and Thermodynamics of Dihydride Formation in the Vanadium-Rich V—Ti—Fe/H2 System* , 1985 .

[9]  Z. Dehouche,et al.  Experiments on a Metal Hydride based Hydrogen Compressor , 2014 .

[10]  E. A. Payzant,et al.  Characterization and analyses of degradation and recovery of LaNi4.78Sn0.22 hydrides following thermal aging , 2013 .

[11]  J. Gore,et al.  A Review of Heat Transfer Issues in Hydrogen Storage Technologies , 2005 .

[12]  C. Lindensmith,et al.  Degradation behavior of LaNi5−xSnxHz (x=0.20–0.25) at elevated temperatures , 2002 .

[13]  A. Isselhorst Heat and mass transfer in coupled hydride reaction beds , 1995 .

[14]  P. Muthukumar,et al.  Metal hydride based heating and cooling systems: A review , 2010 .

[15]  Jobst Hapke,et al.  Measurement of the pressure-composition isotherms of high-temperature and low-temperature metal hydrides , 1998 .

[16]  M. Au,et al.  Rare earth-nickel alloy for hydrogen compression , 1993 .

[17]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[18]  V. Yartys,et al.  Modelling and experimental results of heat transfer in a metal hydride store during hydrogen charge and discharge , 2009 .

[19]  A. A. Yukhimchuk,et al.  System for investigation of hydrogen isotopes — solid body interaction at 500 MPa , 2001 .

[20]  P. M. Golben,et al.  Design, life testing, and future designs of cryogenic hydride refrigeration systems , 1985 .

[21]  Xinhua Wang,et al.  Hydrogen storage alloys for high-pressure suprapure hydrogen compressor , 2006 .

[22]  Xinhua Wang,et al.  A study on 70 MPa metal hydride hydrogen compressor , 2010 .

[23]  M. V. Lototsky,et al.  Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification , 2011 .

[24]  P. Dantzer,et al.  Metal-Hydride technology: A critical review , 1997 .

[25]  L. Barnsley,et al.  High pressure in situ diffraction studies of metal-hydrogen systems , 2011 .

[26]  Chia-Chieh Shen,et al.  On the cyclic hydrogenation stability of an Lm(NiAl)5-based alloy with different hydrogen loadings , 2005 .

[27]  K. Kim,et al.  A hydrogen-compression system using porous metal hydride pellets of LaNi 5 - x Al x , 2008 .

[28]  M. V. Lototsky,et al.  Sample pilot plant of industrial metal-hydridecompressor , 1999 .

[29]  S. S. Murthy,et al.  Heat and Mass Transfer in Solid State Hydrogen Storage: A Review , 2012 .

[30]  B. Kieback,et al.  Solid-state hydrogen storage in Hydralloy–graphite composites , 2013 .

[31]  J. Rodriguez,et al.  Ground Testing of a 10 K Sorption Cryocooler Flight Experiment (BETSCE) , 1994 .

[32]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[33]  J. R. Phillips,et al.  Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers☆ , 1992 .

[34]  W. A. Oates,et al.  Thermodynamics of intermetallic Compound-Hydrogen Systems , 1988 .

[35]  O. Beeri,et al.  Thermodynamic characterization and statistical thermodynamics of the TiCrMn–H2(D2) system , 2000 .

[36]  G. Luo,et al.  Properties of La0.2Y0.8Ni5−xMnx alloys for high-pressure hydrogen compressor , 2010 .

[37]  L. Heung Developments in Tritium Storage and Transportation at the Savannah River Site , 1995 .

[38]  S. S. Murthy,et al.  Parametric studies on a heat operated metal hydride based water pumping system , 2003 .

[39]  D. Fruchart,et al.  Stabilisation of high dissociation pressure hydrides of formula La1−xCexNi5 (x=0–0.3) with carbon monoxide , 1998 .

[40]  James Kulleck,et al.  Degradation study of ZrNiH1.5 for use as actuators in gas gap heat switches , 2004 .

[41]  M. V. Lototsky,et al.  Chemical surface modification for the improvement of the hydrogenation kinetics and poisoning resistance of TiFe , 2011 .

[42]  A. P. In'kov,et al.  Effect of the constructional parameters of thermosorption compressors on the efficiency of the compression process , 1990 .

[43]  M. Guerra‒Balcázar,et al.  Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes , 2013 .

[44]  I. Mudawar,et al.  Experimental investigation and theoretical modeling of dehydriding process in high-pressure metal hydride hydrogen storage systems , 2012 .

[45]  T. Fisher,et al.  Models for metal hydride particle shape, packing, and heat transfer , 2012, 1205.1073.

[46]  F. Askri,et al.  Dynamic behavior of metal–hydrogen reactor during hydriding process , 2004 .

[47]  Choong-Nyeon Park,et al.  Analysis of sloping plateaux in alloys and intermetallic hydrides: I. Diagnostic features , 2004 .

[48]  G. Giardino,et al.  Planck pre-launch status: the Planck-LFI programme , 2010, 1001.2657.

[49]  A. A. Heckes,et al.  A hydrogen-actuated pump , 1980 .

[50]  N. Kherani,et al.  Gas handling systems using titanium-sponge and uranium bulk getters , 1985 .

[52]  Shuang Li,et al.  Investigation on high-pressure metal hydride hydrogen compressors , 2007 .

[53]  A. Prasad,et al.  Hydrogen storage systems based on hydride materials with enhanced thermal conductivity , 2012 .

[54]  George M. Lloyd,et al.  Smart hydrogen/metal hydride actuator , 2007 .

[55]  M. Groll,et al.  Thermodynamic and structural changes of various intermetallic compounds during extended cycling in closed systems , 1997 .

[56]  M. Gupta,et al.  Electronic properties of LaNi4.75Sn0.25, LaNi4.5M0.5 (M=Si, Ge, Sn), LaNi4.5Sn0.5H5 , 2003 .

[57]  H. Kierstead A theory of multiplateau hydrogen absorption isotherms , 1980 .

[58]  Xinhua Wang,et al.  Hydrogen storage properties of (La–Ce–Ca)Ni5 alloys and application for hydrogen compression , 2007 .

[59]  J. E. Nasise Performance and improvements of the tritium handling facility at the Los Alamos scientific laboratory , 1980 .

[60]  Z. Qi,et al.  A 38 MPa compressor based on metal hydrides , 2012 .

[61]  M. Ram Gopal,et al.  Studies on a metal hydride based solar water pump , 2004 .

[62]  J. R. Johnson,et al.  Reaction of hydrogen with the high temperature (C14) form of TiCr2 , 1980 .

[63]  V. Verbetsky,et al.  IMC hydrides with high hydrogen dissociation pressure , 2011 .

[64]  Kei Nomura,et al.  A novel thermal engine using metal hydride , 1979 .

[65]  M. Prina,et al.  Performance and degradation of gas-gap heat switches in hydride compressor beds , 2007 .

[66]  M. V. Lototsky,et al.  On the synthesis and hydrogenation behaviour of MmNi5−xFex alloys and computer simulation of their P–C–T curves , 2004 .

[67]  E. L. Huston,et al.  Engineering properties of metal hydrides , 1980 .

[68]  B. Fultz,et al.  Effects of Thermal Cycling on the Physical Properties of VHx* , 1993 .

[69]  T. Veziroglu Hydrogen Energy Progress VII , 1989 .

[70]  Jai-Young Lee,et al.  The intrinsic degradation behavior of (V0.53Ti0.47)0.925Fe0.075 alloy during temperature-induced hydrogen absorption-desorption cycling , 1999 .

[71]  Y. Matsumura,et al.  Drastic enhancement of effective thermal conductivity of a metal hydride packed bed by direct synthesis of single-walled carbon nanotubes , 2012 .

[72]  P. Dantzer,et al.  Thermodynamics of the hydride chemical heat pump: III considerations for multistage operation☆ , 1987 .

[73]  M. V. Lototsky,et al.  Influence of intrinsic hydrogenation/dehydrogenation kinetics on the dynamic behaviour of metal hydrides: A semi-empirical model and its verification , 2007 .

[74]  R. Baker,et al.  Studies of Phase Compositions and Hydrogen Diffusion in VHx* , 1993 .

[75]  M. Donabedian,et al.  Spacecraft Thermal Control Handbook, Volume II: Cryogenics , 2004 .

[76]  P. Goodell Thermal conductivity of hydriding alloy powders and comparisons of reactor systems , 1980 .

[77]  G. Luo,et al.  Effect of hydrogen absorption/desorption cycling on hydrogen storage properties of a LaNi3.8Al1.0Mn0.2 alloy , 2012 .

[78]  B. R. Livesay,et al.  Hydriding kinetics of SmCo5 , 1980 .

[79]  F. Askri,et al.  Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger , 2009 .

[80]  K. Yasuda,et al.  From Partition Function to Phase Diagram — Statistical Thermodynamics of the LaNi5 — H System* , 1993 .

[81]  A. Nobile,et al.  Tritium processing at the Savannah River Site: Present and future , 1990 .

[82]  Jonathan X. Weinert,et al.  Hydrogen refueling station costs in Shanghai , 2006 .

[83]  A. Driessen,et al.  Search for new metal-hydrogen systems for energy storage , 1984 .

[84]  James J. Bock,et al.  Planck Pre-Launch Status: The Planck Mission , 2010 .

[85]  John R. Lacher,et al.  A Theoretical Formula for the Solubility of Hydrogen in Palladium , 1937 .

[86]  Yu. F. Shmal’ko,et al.  Series of metal hydride high pressure hydrogen compressors , 1995 .

[87]  Ye. V. Klochko,et al.  Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures , 2013 .

[88]  P. Kula,et al.  Performance of containers with hydrogen storage alloys for hydrogen compression in heat treatment facilities , 2011 .

[89]  P. Muthukumar,et al.  Erratum to “Metal hydride based heating and cooling systems: A review” [International Journal of Hydrogen Energy (2010) 35: 3817–3831] , 2010 .

[90]  P. Muthukumar,et al.  Study of heat and mass transfer in MmNi4.6Al0.4 during desorption of hydrogen , 2010 .

[91]  S. Fujitani,et al.  A Method for Numerical Expressions of P-C Isotherms of Hydrogen-Absorbing Alloys* , 1993 .

[92]  F. Askri,et al.  Experimental and comparative study of metal hydride hydrogen tanks , 2011 .

[93]  A. Nobile Experience Using Metal Hydrides for Processing Tritium , 1991 .

[94]  K. Kim,et al.  Metal hydride compacts of improved thermal conductivity , 2001 .

[95]  K. Karperos Operating characteristics of a hydrogen sorption refrigerator. I. Experiment design and results , 1987 .

[96]  P. Dantzer,et al.  What Materials to Use in Hydride Chemical Heat Pumps? , 1988 .

[97]  R. Bowman Development of metal hydride beds for sorption cryocoolers in space applications , 2003 .

[98]  M. V. Lototsky,et al.  Modelling of phase equilibria in metal–hydrogen systems , 2003 .

[99]  Y. Matsushita,et al.  Investigation of wall stress development and packing ratio distribution in the metal hydride reactor , 2012 .

[100]  T. Kodama The thermodynamic parameters for the LaNi5−xAlx–H2 and MmNi5−xAlx–H2 systems , 1999 .

[101]  Z. Dehouche,et al.  Experimental study on a metal hydride based hydrogen compressor , 2009 .

[102]  Ted Miller,et al.  Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds , 2009 .

[103]  Kwang J. Kim,et al.  Experimental study of a metal hydride driven braided artificial pneumatic muscle , 2009 .

[104]  J. Reilly,et al.  A New Laboratory Gas Circulation Pump for Intermediate Pressures , 1971 .

[105]  P. Fischer,et al.  Electronic, thermodynamic, and crystallographic properties, preparation , 1988 .

[106]  E. Akiba,et al.  Development of a metal hydride compressor , 1983 .

[107]  Masato Osumi,et al.  Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy , 1998 .

[108]  M. Groll,et al.  Cyclic stability of various application-relevant metal hydrides , 1995 .

[109]  Ye. V. Klochko,et al.  Thermally Driven Metal Hydride Hydrogen Compressor for Medium-Scale Applications , 2012 .

[110]  T. Flanagan,et al.  Thermodynamic and degradation studies of LaNi4.8Sn0.2-H using isotherms and calorimetry , 1995 .

[111]  S. Suda,et al.  A method for improving the long-term storability of hydriding alloys by air/water exposure , 1995 .

[112]  P. Dantzer,et al.  Thermodynamics of hydride chemical heat pump—II. How to select a pair of alloys , 1986 .

[113]  G. Sandrock Applications of Hydrides , 1995 .

[114]  G. Sandrock Hydrogen-Metal Systems , 1995 .

[115]  D. Pearson,et al.  The Planck sorption cooler: Using metal hydrides to produce 20 K , 2007 .

[116]  P. Lund,et al.  Combined hydrogen compressing and heat transforming through metal hydrides , 1999 .

[117]  K. Yang,et al.  Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3 , 2009 .

[118]  N. A. Kelly,et al.  Evaluation of a thermally-driven metal-hydride-based hydrogen compressor , 2012 .

[119]  E. Silva Industrial prototype of a hydrogen compressor based on metallic hydride technology , 1993 .

[120]  B. Fultz,et al.  Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications , 2002 .

[121]  C. B. Netterfield,et al.  Planck early results. II. The thermal performance of Planck , 2011, 1101.2023.

[122]  Dragan D. Nikolic,et al.  Modeling and optimization of multi-tubular metal hydride beds for efficient hydrogen storage , 2009 .

[123]  L. Wade,et al.  abstract) Development of Sorbent Bed Assembly for a Periodic 10K Solid Hydrogen Cryocooler , 1993 .

[124]  M. Groll,et al.  Expanded graphite as heat transfer matrix in metal hydride beds , 2003 .

[125]  Shumao Wang,et al.  Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors , 2011 .

[126]  Z. Dehouche,et al.  Integrated electrolyser—metal hydride compression system , 2006 .

[127]  J. Bloch,et al.  Kinetics and mechanisms of metal hydrides formation—a review , 1997 .

[128]  Didier Imbault,et al.  Experimental investigation of the swelling/shrinkage of a hydride bed in a cell during hydrogen absorption/desorption cycles , 2012 .

[129]  Dajie Sun Designs of metal hydride reactors , 1992 .

[130]  F. Askri,et al.  Experimental study and characterization of metal hydride containers , 2011 .

[131]  H. Uchida Surface processes of H2 on rare earth based hydrogen storage alloys with various surface modifications , 1999 .

[132]  P. Goodell Stability of rechargeable hydriding alloys during extended cycling , 1984 .

[133]  P. Kula,et al.  Research on compressor utilizing hydrogen storage materials for application in heat treatment facilities , 2009 .

[134]  S. S. Murthy,et al.  Parametric studies on a metal hydride based single stage hydrogen compressor , 2002 .

[135]  Tomoyuki Yokota,et al.  “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material , 2003 .

[136]  L. Beavis CHARACTERISTICS OF SOME BINARY TRANSITION METAL HYDRIDES. , 1969 .

[137]  Y. Yürüm Hydrogen Energy System , 1995 .

[138]  Y. Yurum,et al.  Hydrogen energy system : production and utilization of hydrogen and future aspects , 1996 .

[139]  Y. Chabal,et al.  Materials for Hydrogen Storage , 2015 .

[140]  J. Goyette,et al.  Hydrogen sorption cycling performance of LaNi4.8Sn0.2 , 2006 .

[141]  Jai-Young Lee,et al.  THE INTRINSIC DEGRADATION PHENOMENA OF LANI5 AND LANI4.7AL0.3 BY TEMPERATURE INDUCED HYDROGEN ABSORPTION-DESORPTION CYCLING , 1987 .

[142]  Fusheng Yang,et al.  Simulation study on the reaction process based single stage metal hydride thermal compressor , 2010 .

[143]  W. Kantlehner,et al.  With Metal Hydrides , 2005 .

[144]  Fusheng Yang,et al.  Performance Comparison and Analysis of Typical Energy Conversion Cycle , 2011, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring.

[145]  Pio A. Aguirre,et al.  Modeling and simulation of absorption–desorption cyclic processes for hydrogen storage-compression using metal hydrides , 2011 .

[146]  Tohru Ifukube,et al.  Development of an actuator using a metal hydride and its application to a lifter for the disabled , 1987, Adv. Robotics.

[147]  Kazuhiko Yamashita,et al.  Solar or surplus heat-driven actuators using metal hydride alloys , 2011 .

[148]  Victor Rudolph,et al.  Investigation on the influences of heat transfer enhancement measures in a thermally driven metal hydride heat pump , 2010 .

[149]  H. Wipf Hydrogen in Metals III , 1997 .

[150]  J. Goyette,et al.  Honeycomb metallic structure for improving heat exchange in hydrogen storage system , 2011 .

[151]  M. V. Lototskii,et al.  Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation , 2007 .

[152]  Satish Tamhankar,et al.  DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System , 2011 .

[153]  B. Hardy,et al.  Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides , 2012 .

[154]  Tian-Shiang Yang,et al.  On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors , 2010 .

[155]  Prediction of the thermal conductivity of metal hydrides - The inverse problem , 2009 .

[156]  K. Kim,et al.  Hydrogen compression characteristics of a dual stage thermal compressor system utilizing LaNi5 and Ca0.6Mm0.4Ni5 as the working metal hydrides , 2010 .

[157]  V. Yartys,et al.  Synchrotron diffraction studies and thermodynamics of hydrogen absorption–desorption processes in La0.5Ce0.5Ni4Co , 2011 .

[158]  G. Morgante,et al.  Cryogenic characterization of the Planck sorption cooler system flight model , 2009, 1001.4628.

[159]  A. Solovey,et al.  Metal hydride heat pump for watering systems , 2001 .

[160]  R. Bowman,et al.  Characterization of metal tritides for the transport, storage, and disposal of tritium , 1976 .

[161]  R. Balasubramaniam Hysteresis in metal–hydrogen systems , 1997 .

[162]  J. Mathieu,et al.  Thermodynamic and structural properties of LaNi5−yAly compounds and their related hydrides , 1979 .

[163]  M. V. Lototsky,et al.  Sn-containing (La,Mm)Ni5−xSnxH5−6 intermetallic hydrides: thermodynamic, structural and kinetic properties , 2003 .

[164]  P. Dantzer,et al.  Thermodynamics of the hydride chemical heat pump: Model (I) , 1986 .

[165]  G. Libowitz,et al.  Use of vanadium-based solid solution alloys in metal hydride heat pumps , 1987 .